42nd Annual Conference & Exhibition APR April 3-6, 2023 3 Embassy Suites Loveland Hotel & Conference (TO APR 6 REGISTRATION IS NOW OPEN!

42

COLORADO RURAL WATER

CONFERENCE & EXHIBITION

GET THE LEAD OUT

https://www.crwa.net/

Powell Water Micro Algae System (PWMAS) Natures Way of Cleaning Water for Abundant Use

Electrocoagulation & Support Equipment www.powellwater.com Powell Water System, Inc. Scott Powell, President

(303) 241-2489

Design, Build and Operation

Lagoon Logistics, LLC Jeff Couch President (970) 231-9937

Sundine Enterprises

Microalgae Microbe Assemblages Sundine Enterprises, Inc. Judd Sundine, Horticulturist (720) 363-0548

United States Patent Number 10358361 B2 & 11407660 B2. System and Method for Remediation of Wastewater Including Aerobic, Anaerobic and Electrocoagulation Technology. This patent is wholly licensed by Powell Water Systems, Inc.

Powell Water Micro Algae System

Biological and Electrical Treatment Advantages Broad Spectrum Treatment

- **PFOA/PFOS (Removal in Both Water and Solids)**
- Solid Removal with Biological Conversion
- Arsenic Removal Below Detectable Limits
- Lead & Copper Removal |
- Cadmium & Zinc ions
- Effective Disinfection
- Nutrient Removal
- Lower Initial Investment
- Lower Operating Costs

Proposed New Discharge Limits

Colorado

- PFOA PFOS PFAS 0.004 ug/l
- Lead 0.015 mg/l Action Level
- Copper 1.3 mg/l Action Level
- Arsenic 0.02 ug/l
- Phosphate 0.025 mg/l

Missouri

- Ammonia 0.60 mg/l
- Phosphorus 0.50 mg/l

Virtually all EPA wastewater discharge permits will have more restrictive effluent standards between now and 2027.

We need to change the way we approach water treatment

Traditionally: we try to solve one water treatment problem at a time, and we ignore the overall consequences of the traditional water treatment step.

For example: Hard water in out homes block our pipes, makes our skin uncomfortable after bathing, and makes washing our clothes more difficult.

Traditional Solution: Ion exchange water softening removes calcium, magnesium, and hardness from the water used in the house.

Unintended problem: The added Total Dissolved Solids (TDS) being discharged back into the river makes it more difficult for the cites down stream to make drinking water! The problem is compounded in each city.

Innovative Solution: Municipal Electrocoagulation, at the well head before potable water distribution, will remove calcium, magnesium, and hardness, in a solid form, with clean electricity, eliminating the need for in home ion exchange water softening.

Overall Benefit: Soft Water in every home in the city. Less cleaning product TDS added to sewer. Cleaner softer drinking water for the city downstream.

Well Water Eastern Colorado City

 Table 1: Summary of Potable Water Quality

(all wells combined, samples collected between January and March 2020)

<u>Parameter</u>	<u>Unit</u>	<u>Average</u>	<u>Maximum</u>
TDS	mg/L	268	295
рН	s.u.	7.5	8.0
Alkalinity	mg/L as CaCO3	141	157
Calcium	mg/L	105	121
Magnesium	mg/L	35	50
Hardness	mg/L as CaCO3	407	506
Sulfate	mg/L	11	14
Chloride	mg/L	10	12

Hardnes	ss Classification	as Calcium Carbonat	te in mg/l
Soft water	less than 17	Hard water	121 to 180
Slightly hard	17 to 60	Very hard	above 181
Moderately hard	61 to 120	This city	407 mg/l

City Wastewater Entering the Sewer

Table 2: Summary of Influent Wastewater Quality									
(samples collected between January and March 2020)									
<u>Parameter</u>	<u>Unit</u>	<u>Average</u>	<u>Maximum</u>						
TDS	mg/L	553	611						
рН	s.u.	8.0	8.6						
Alkalinity	mg/L as CaCO3	300	348						
Calcium	mg/L	135	229						
Magnesium	mg/L	38	60						
Hardness	mg/L as CaCO3	493	819						
Sulfate	mg/L	13	27						
Chloride	mg/L	95	135						

Environmental Protection Agency (EPA) National Secondary Drinking Water Regulations for Total Dissolved Solids (TDS) is 500 mg/l

TDS Increases From Wells to Sewer

TDS increase	285 mg/l	106%
Calcium increase	30 mg/l	29%
Magnesium increase	3 mg/l	9%
Sulfate increase	2 mg/l	18%
Chloride increase	85 mg/l	850%

Colorado Department of Public Health and Environment (CDPHE) would like a Total Dissolved Solids (TDS) reduction of 150 to 200 mg/l

Home Water Softeners Add TDS

Ion exchange water softeners add two Sodium ions and two chloride ions into the home water for each Calcium ion removed from the water.

To regenerate the ion exchange resin, saturated sodium chloride is used. The sodium, chloride, magnesium, calcium, and hardness is returned to the water going to the sewer plant.

In home water softeners added 85 mg/l chloride & 55 mg/l sodium, or 140 mg/l TDS to the well water entering the home creating sewer water leaving the home.

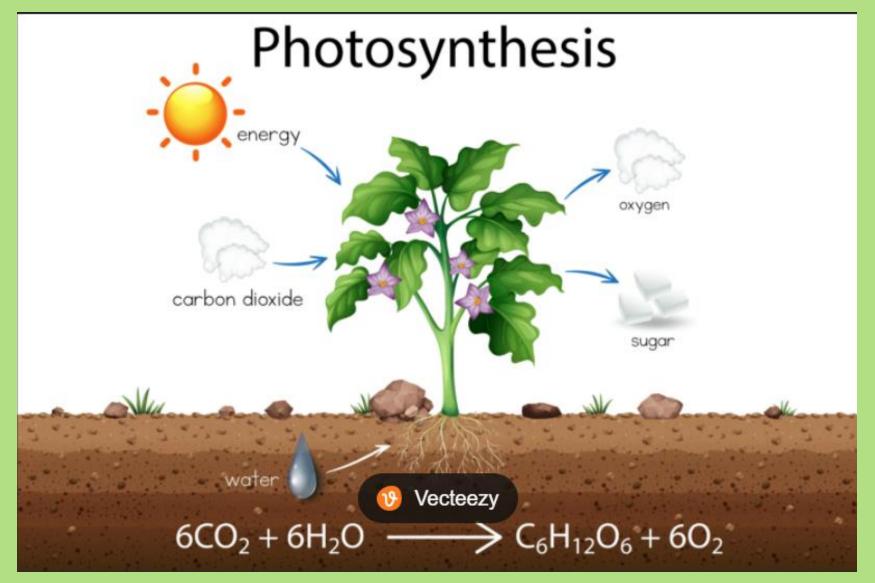
Softening Well Water with Electricity

Calcium removal at 90% of 105 mg/l Magnesium removal at 90% of 35 mg/l Total TDS removed as solids Sodium Chloride that was not added Effective reduction of TDS at sewer

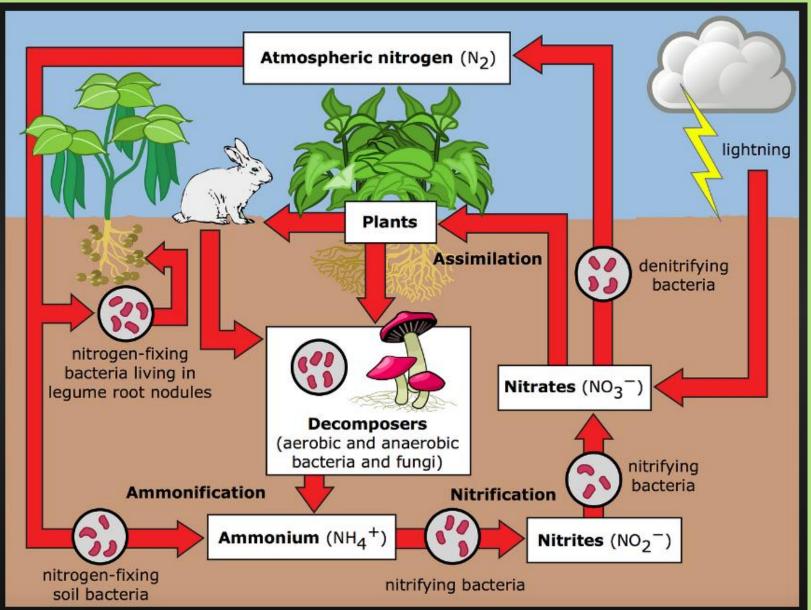
94 mg/l <u>32 mg/l</u> 126 mg/l <u>140 mg/l</u> 266 mg/l

CDPHE TDS desired reduction is 150 to 200 mg/l If you do not add the Sodium Chloride to the water in the home, you do not need to take it out at the sewer. Every Home benefits from Soft Water. The Towns Down Stream receive Soft Water. Powell Water Micro Algae Systems Innovative Lagoon and Electrocoagulation 90% reduction in electrical aeration costs. 90% reduction in accumulated lagoon solids. 90% reduction in carbon dioxide creation. 50% reduction in disinfection costs.

Primary Treatment



Tertiary Treatment


Powell Water Microalgae System (PWMAS) Patent No: US 10,358,361 B2 & 11407660 B2 11

Micro Algae Converts Carbon Dioxide to Oxygen

Microbes Consume the Sugar and the Oxygen in the Lagoon

Microbes Convert Ammonia to Nitrogen Gas

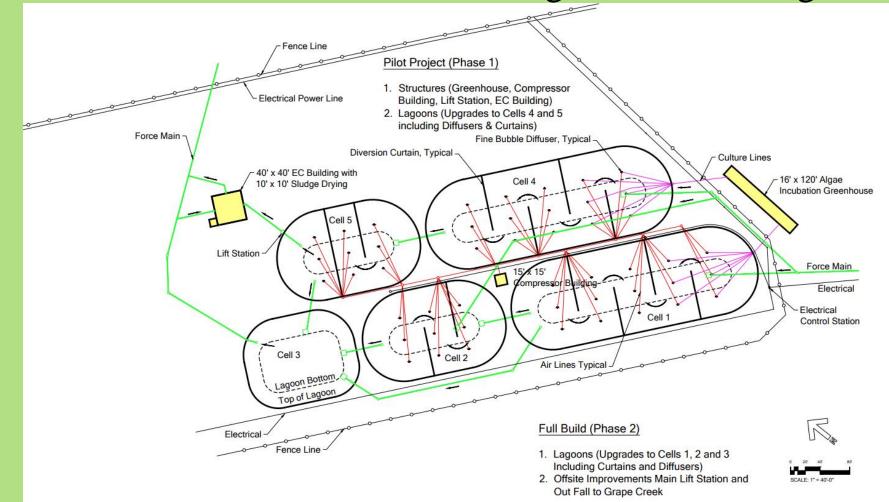
Cultivated Micro Algae and Microbes

Eliminate mechanical aeration

Eliminate Odor

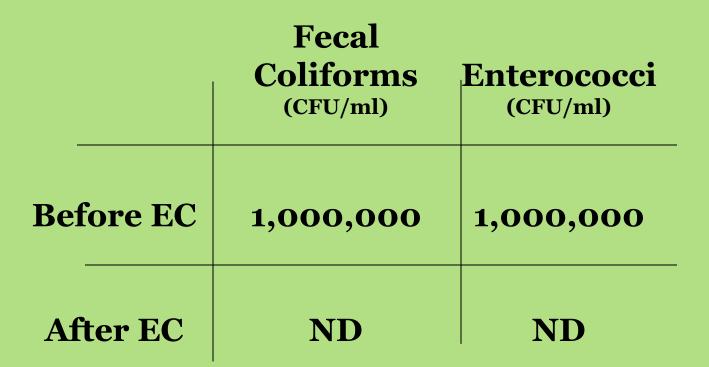
Reduce aeration electricity cost by 90%

Organics are Consumed in the Lagoons Drying Bed for Inorganics



Enhance Existing Lagoon System

PWMAS Modification Details Greenhouse and Electrocoagulation Buildings

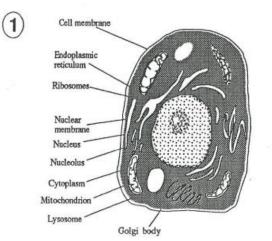

Economic Reasons for PWMAS Colorado Sanitation District: 1,100 people 700 taps \$40,000 annual median household income **SBR UV PWMAS** \$14,100,000 \$4,400,000 Capital Personnel 8 hours/day 2 hours/day 2027 EPA Regs Yes No **CO**₂ Reduction No Yes 19

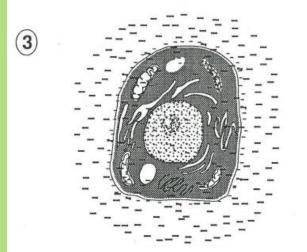
Cadmium Copper Lead Zinc The Doe Run Company Brushy Creek Mine Storm Water Run Off									
	Cadmium Copper Lead Zinc								
Raw water ppb	36	23	1,285	6,675					
Powell EC ppb	0.29	0.38	0.76	18					
% Reduction	99.19%	98.35%	99.94%	99.73%					
Action Level	5	1,300	150	5,000					

Cadmium Copper Lead Zinc Berkeley Pit, Butte Montana, Horseshoe Bend Mine Acid Mine Drainage

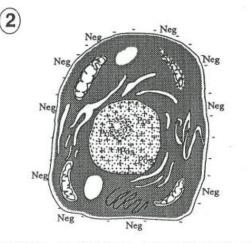
	Cadmium	Copper	Lead	Zinc
Raw water ppb	1,014.65	30,983.5	3.08	260,050
Powell EC ppb	4.61	6.860	< 0.6	29
% Reduction	99.55%	99.98%	>80.5%	99.99%
Action Level	5	1,300	150	5,000

Bacterial Components



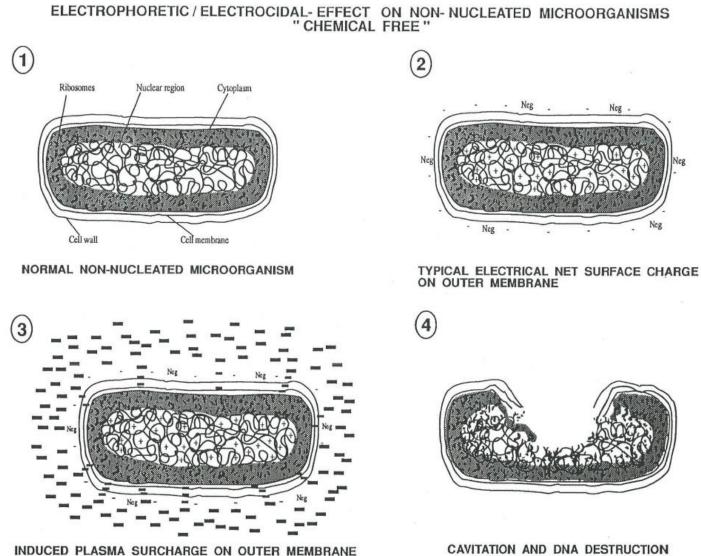

Data Source: Rosario and Adkinson

Bacteria Cell Walls are Broken


ELECTROPHORETIC / ELECTROCIDAL- EFFECT ON NUCLEATED MICROORGANISMS "CHEMICAL FREE"

NORMAL NUCLEATED MICROORGANISM

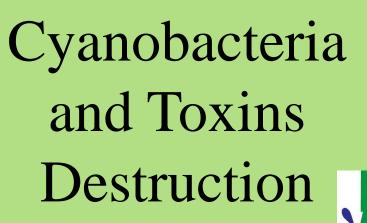
INDUCED PLASMA SURCHARGE ON OUTER MEMBRANE



TYPICAL ELECTRICAL NET SURFACE CHARGE ON OUTER MEMBRANE

(4)

Cell Contents are Denatured



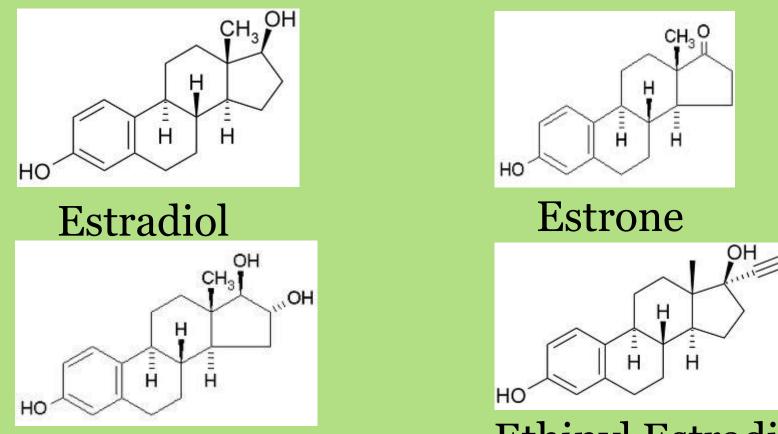
(DEATH OF THE MICROORGANISM)

50 gpm

Celina, Ohio Grand Lake Drinking Water

Mono Species of Planktatherix (Neurotoxic Species) Cyanobacteria

Raw Lake Water 97.1 ug/l was reduced to 0.001 ug/l with Powell EC


Virus Destruction

			PMMoV (copies/ml)	HPyV (copies/ml)	
Before EC	12,800	2,220	60,100	100,000	
After EC	ND	ND	ND	ND	

Data Source: Rosario and Adkinson

Estrogenic Endocrine Disruptors

Estriol

Ethinyl Estradiol

Deformed white sucker fish with both male and female sex tissue have been discovered near Colorado wastewater treatment plants on the South Platte River and Boulder Creek. Female fish far outnumber the male fish near the plants. https://www.chron.com/news/nation-world/article/Discovery-of-deformed-fish-scares-scientists-1679259.php

<u>PFOA</u>				P	FOS	1)
	PFOA Liquid ng/l (ppt)	% Removal Liquid	PFOA Solids ng/l (ppt)	PFOS Liquid ng/l (ppt)	% Remove d Liquid	PFOS Solids ng/l (ppt)
Landfill Leachate as Received	1,540			421		
Electrocoagulation + H2O2	3.97	99.74	70	2.36	99.94	20

Powell Water Systems not only separates the PFAS from the water, but also destroys the PFAS in the coagulate solids. US Patent No. 8,048,279

Fluoride Carbon Bond Destruction in the Solids-One of the Strongest Single Bonds in Chemistry

Powell Water	PFOA Liquid ng/l (ppt)	% Removal Liquid	PFOA Solids ng/l (ppt)	PFOS Liquid ng/l (ppt)	% Removal Liquid	PFOS Solids ng/l (ppt)
Landfill Leachate as received	1,540			421		
Electrocoagulation Aluminum blades	193	87.47%	31,900	11.1	97.36%	8,230
Electrocoagulation Iron and aluminum	284	81.56%	12,600	11.6	97.24	3,390
Electrocoagulation and Processing Aid Hydrogen peroxide	3.97	99.74%	70	2.36	99.94%	20

EPA Proposed Regulation Limit for PFOA & PFOS is 4 ng/l (ppt)

Fluoride Carbon Bond Destruction Bureau of Reclamation

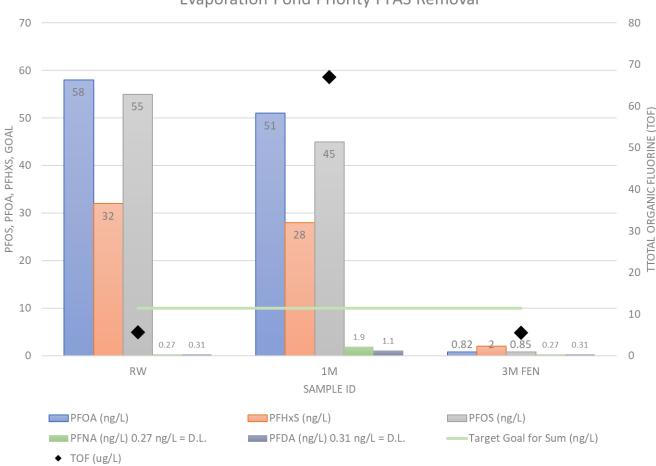
Bureau of Reclamation owns and operates (BGNDRF) in Alamogordo, NM

Four groundwater wells used for supply of brackish water to desal research trains and three evaporation ponds to store spent brine

Salinity of these wells range from 1,000 to 6,000 mg/L total Brackish dissolved National Desalinati7/27/22....Well 2 solids (TDS)

2 of the 4 wells are contaminated with PFAS and were bench tested by Garver on and Evaporation Pond (EP)

Due to NM regulations the facility's discharge permit no longer allows any water with PFAS to enter the sewer adding stress to the evaporation ponds capacity


Problem

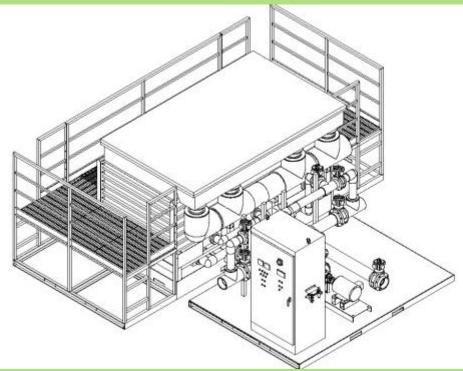
EP – Lab Data

- Longer, E-Fenton run time resulted in better removal for PFOA, PFOS, PFHxS, PFDA and PFNA
- 1M FEN led to 255% to 600% increase in PFDA and PFNA
- 3M FEN brought PFNA and PFDA back to ND
- TOF increase in 1M Centrate samples may be indicator of C-F destruction

Evaporation Pond Priority PFAS Removal

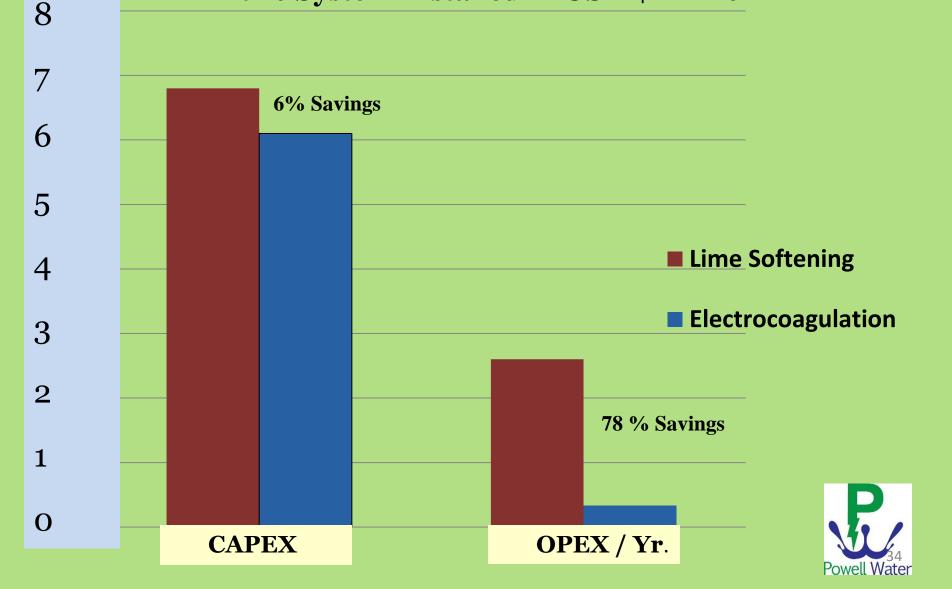
Eric Dole @ Garver 602 881 0186

EPA Proposed Regulation PFOS PFOA is less than 4 ppt GARVER 132



Chemical Lime Softening Compared to Powell Electrocoagulation for Steam Assisted Heavy Crude Oil Extraction.

As a practical mater the most difficult aspect of Lime Softening is the truck traffic flow to haul in the lime and haul away the coagulated solids.


If you do not add contaminates to the water, you do not need to remove them from the water.

Powell 500 gpm EC Assembled skid is 18 ft by 17 ft, 7 ft tall

MILLION 500 GPM Lime Softening vs. Electrocoagulation CAPITAL EXPENSE – OPERATING EXPENSE Entire System Installed in USD \$ Million

Operating Expense /Yr. (OPEX)

							Lime Soften	ing
1,5 M							Electrocoagul	ation
1 M								
900 K								
850 K								
800 K								
750 K								
700 K								
650 K								
600 K								
550 K								
500 K								
450 K								
400 K								
350 K								
300 K								
200 K								
150 K								
100 K								
50 K								
25 K								
15 K								
	Elect	ricity	Operation		Chen	nicals	Consumables	0
, i			Lat	oor				Disposal

Red Rocks Community College

- Water Quality Management (WQM) classes start at 6pm, and meet once per week
- Varied schedules- online, remote, in-person, accelerated, etcetera
- Prior Learning Assessment- turn experience into college credit
- All courses have Training Units

- Certificates
- Associates of Applied Science (2 years)
- Bachelors of Applied Science (4 years)
- Chelsea Campbell; Faculty Chelsea.Campbell@rrcc.edu

г) к

WATER QUALITY MANAGEMENT

Bureau of Reclamation

For more information on this project, please contact Eric Dole.

EJDole@GarverUSA.com 303.721.6932

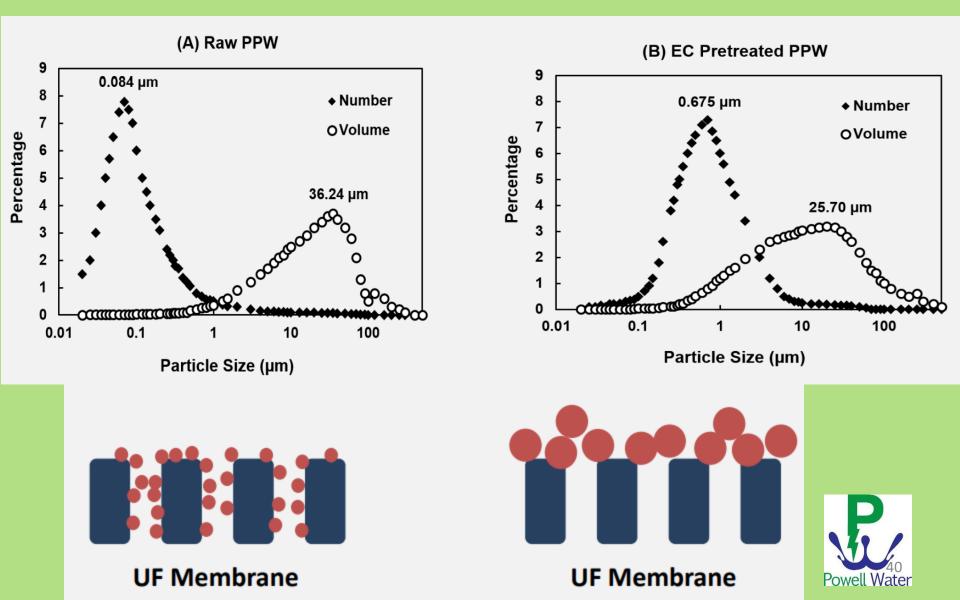
PROJECT PARTNERS

Desalination and Water Purification Research Program Pitch to Pilot for Fiscal Year 2019 NO. BOR-DO-19-F017

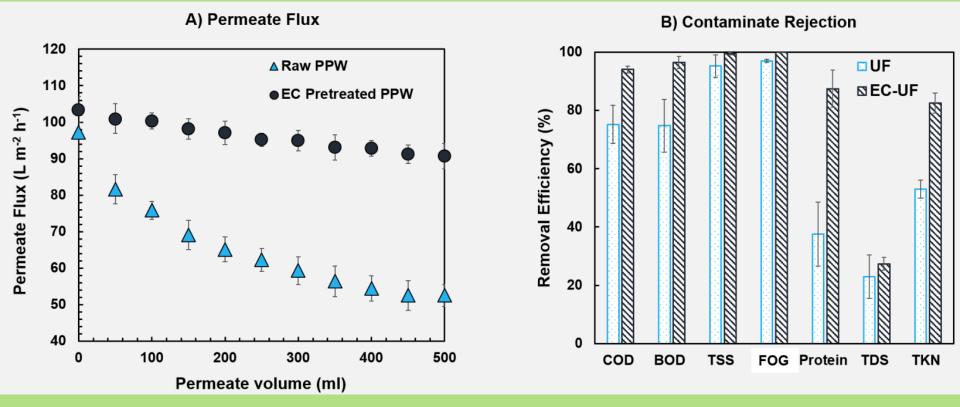
MICKLEY & ASSOCIATES

Consistent High Quality Permeate Without Irreversible Fouling

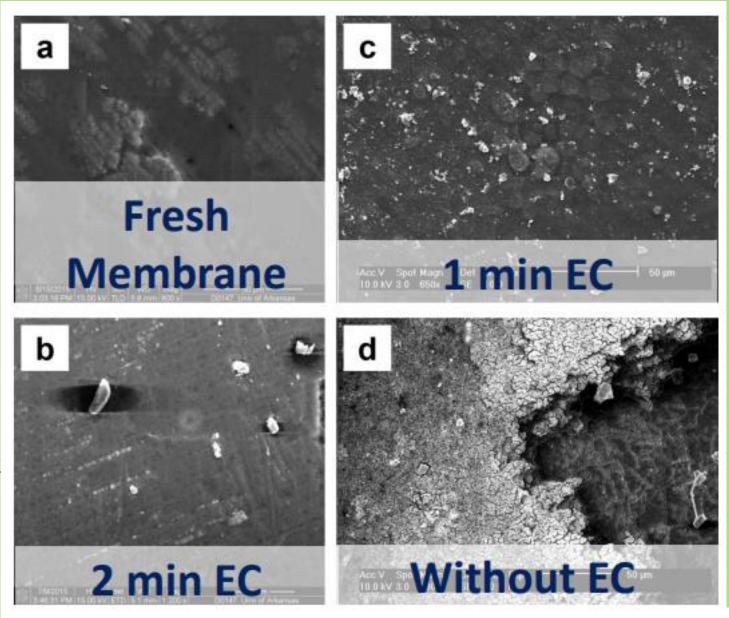
	10t	h Percer	ntile		Average		90t	h Percer	ntile
TARGET CONSTITUENT	Raw Water	Filtered EC Supernatant	Permeate	Raw Water	Filtered EC Supernatant	Permeate	Raw Water	Filtered EC Supernatant	Permeate
TH as CaCO3 (mg/L)	699.7	174.3	0.1	743.38	428.68	1.38	810.4	723.4	4.86
рН	8.1	7.9	7.1	8.3	8.8	8.8	8.7	9.3	9.9
TDS (mg/L)	1683	1515	5	2848.7	1686.2	11.4	1992	1966	21.2
Silica (mg/L)	15.61	0.30	0.3	17.7	1.39	0.3	19.4	3.24	0.3
TSS (mg/L)	5.0	5	5	5.3	12.5	5	5.3	17.8	5
Total Phosphate (mg/L)	0.11	0.05	0.05	0.16	0.06	0.05	0.19	0.05	0.05
TOC (mg/L)	5.79	4.84	0.5	6.38	5.18	0.51	7.34	5.46	0.5
*ORP (mV)	180	-141.8	-182.9	194.00	-112.40	-124.60	211	-70	-61.2
*Temperature ([°] C)	15.86	13.19	12.86	18.09	16.99	16.96	19.94	21.23	21.33
Total Coli (mpn/100 mL)	1.0	1.0	1.0	1.18	1.67	1.0	1.0	1.0	1.0
OPERATING PARAMETER	10t	h Percer	ntile		Average		90t	h Percer	ntile
Energy Intensity (kWh/kgal)		39.6			44.9			51.4	
Pressure (psi)		312			346			386	
Permeat Flow (gpm)		0.72			0.80			0.86	
Perm Flux (gfd)		11.9			13.2			14.3	
Concentrate Flow (gpm)		0.80			0.88			0.97	
% Recovery 3-stg RO		43%			48%			52%	
**% Recovery Overall		49%			54%			59%	


*As trended through in-line analyzers

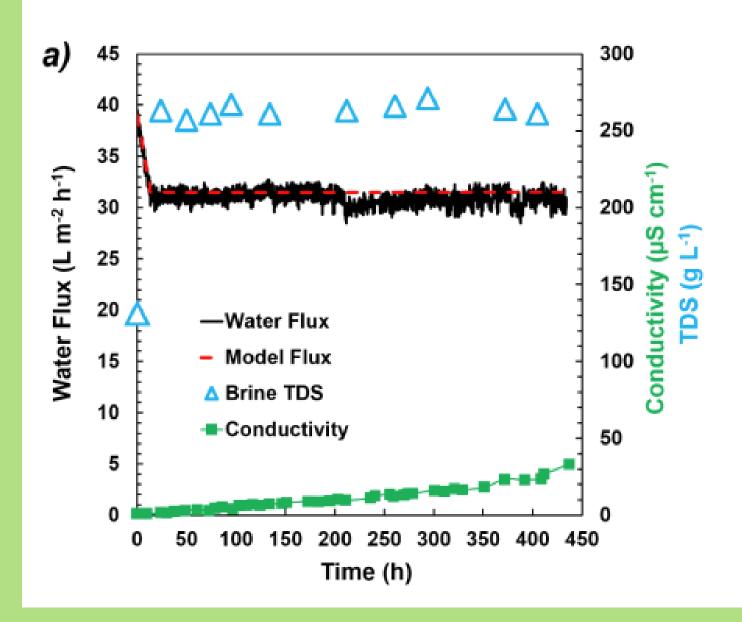
**@ 400 ppm TDS w/ Blend


98% EC RO water recovery with implementation of recommended modifications from original test parameters Powell Water

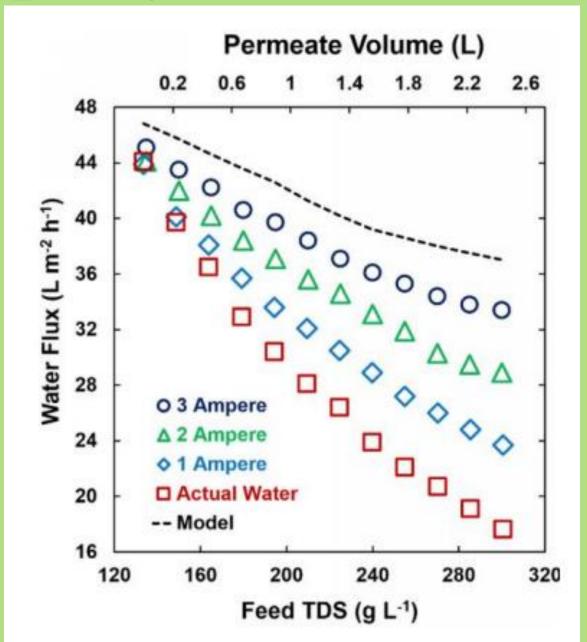
Particle Size Distribution


Ultra - Filtration Performance Significantly Improved With EC Pretreatment

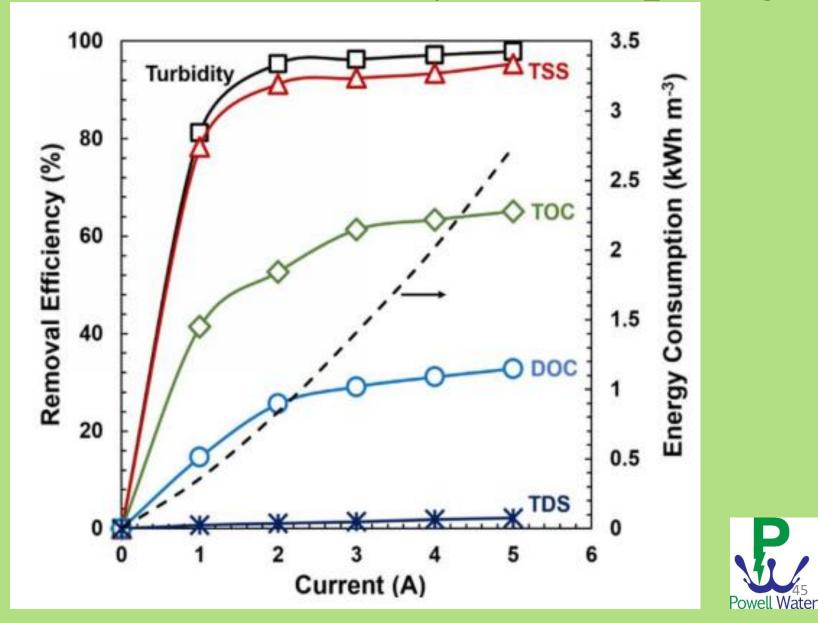
35% increase in permeate flow rate with Powell EC pretreatment



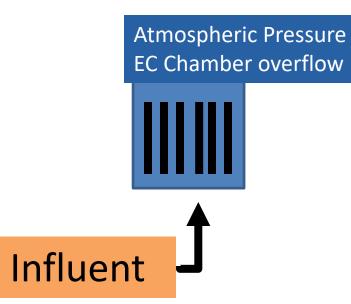
Scanning Electron Microscopy Imaging Shows Reduced Fouling via EC Pretreatment



400 + Hours With No Reduction in Water Flux



Amperage vs Flux Decline



Removal Efficiency vs Amperage

Electrocoagulation Typical Flow Diagram

Water and Coagulated Solids separation.

- 1. Vacuum Clarifier
- 2. Slant plate clarifier
- 3. Decantation
- 4. Lagoon
- 5. Dissolved Air Flotation

Atmospheric Pressure Electrocoagulation Chamber Off the shelf dissolvable electrocoagulation blades

Powell Water Electrocoagulation

 uses electricity and sacrificial metal blades/plates
 to coagulate solids

50 gpm Tertiary Treatment Oklahoma WWTP

USED

Courtesy: University of AZ Presentation "Electrocoagulation and Water Sustainability: Silica and Hardness Control" | June 26, 2008 | James C. Baygents and James Farrell

Electro-Coagulation vs. Chemical Coagulation

	Potassium Alum KAI(SO4) ₂ .12(H2O)	Ferric Chloride FeCl3·6(H2O)	Electro-coagulation Fe2+ or Al3+
Alum and ferric chloride cause salinity increase b/c of salt counter-ions	Potassium K = 39.10 Aluminum Al = 26.98 Sulfur S = 32.06 Oxygen O = 16.00 Hydrogen H = 1.01 KAI(SO4)2*12(H2) = 474.44	Iron Fe = 55.85 Chlorine Cl = 35.45 Hydrogen H = 1.01 Oxygen O = 16.00 FeCl3*6(H2O) = 270.32	Metal Sheet
Total Dissolved Solids reduction in place of TDS increase	17.6 to 1 5.7% Al	4.8 to 1 20.66% Fe	1 to 1 100%

"When compared with alum treatment, electrocoagulation provided approximately 83% less sludge volume and a 76%

improvement in filtration rate." (EPA / 540 / S-937504 September 1993 Emerging Technology)

- <u>Plates</u> are placed vertically within the patented reaction chamber
- <u>Direct current</u> is applied to the <u>first and last blade</u>
- Untreated water is introduced into the bottom of the chamber
- Water is dispersed <u>evenly</u> as it <u>moves upward</u> through the blades
- <u>Water conducts electricity throughout</u> the chamber

Samsung 600 gpm unit South Korea

- Metal blades change from a solids to an ion when electrons pass through.
- Electron flooded water neutralizes charged particles, Van der
 Waals force, making them separable (precipitate) from the water
- Treated water
 overflows to secondary
 separation such as
 ponds, clarifiers,
 filters, or etcetera.

Central Wastewater Treatment Facility (CWT) 50 gpm, Denver, Colorado

• Heavy metals precipitate into acid-resistant <u>oxide</u> sludge that passes the Toxic Classification Leaching Procedure (TCLP), making the sludge non-hazardous

The Powell Electrocoagulation Process is Scalable to accommodate larger flow rates. 600 gpm is the manufacturing economy of scale and then parallel units can be used to treat any size flow rate.

500 gpm 1,866,240 square inch Wet blade surface area

50 gpm 186,624 square inch Wet blade surface

Two 500 gpm EC Systems in Parallel

With ultra filtration and reverse osmosis for 95% water recovery

Electrocoagulated, Ultra Filtration Reject Water is Pulled into a Vacuum Tower

Coagulated solids are pumped into a dumpster at 23% solids by weight.

The solids continue to dewater over time.

Solids Handling

"When compared with alum treatment, electrocoagulation provided approximately **83% less sludge** volume and a **76% improvement in filtration rate.**"

EPA / 540 / S-937504 September 1993 Emerging Technology Summary, Superfund Innovative Technology Evaluation

EC Solids Dry in the Oxide Form

Coal Mine Surface Run Off Water Powell Electrocoagulated Solids

Sludge from EC:

- Solids dewater completely
- <u>Metals</u> are non-hazardous

as <u>oxides</u>

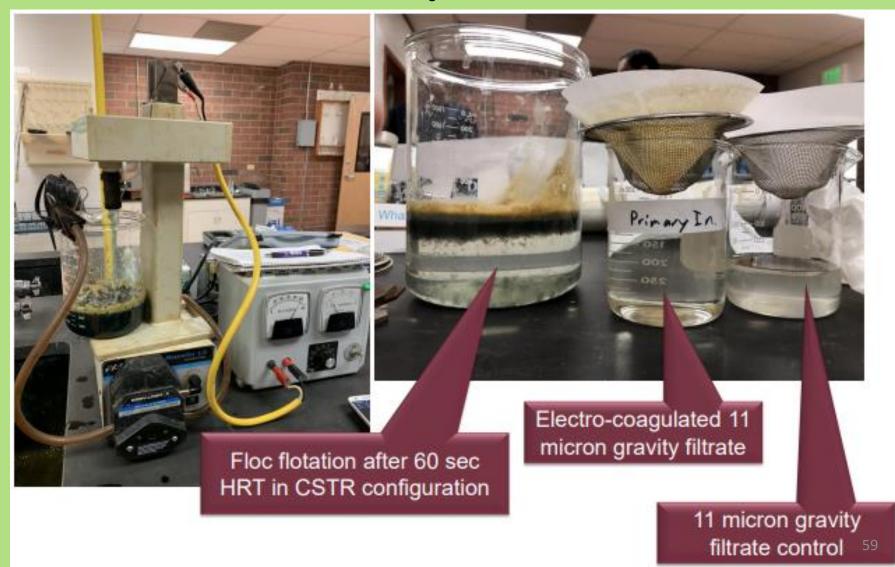
- Does <u>not leach</u> at ambient landfill pH
- **Passes EPA TCLP** and California Title 22

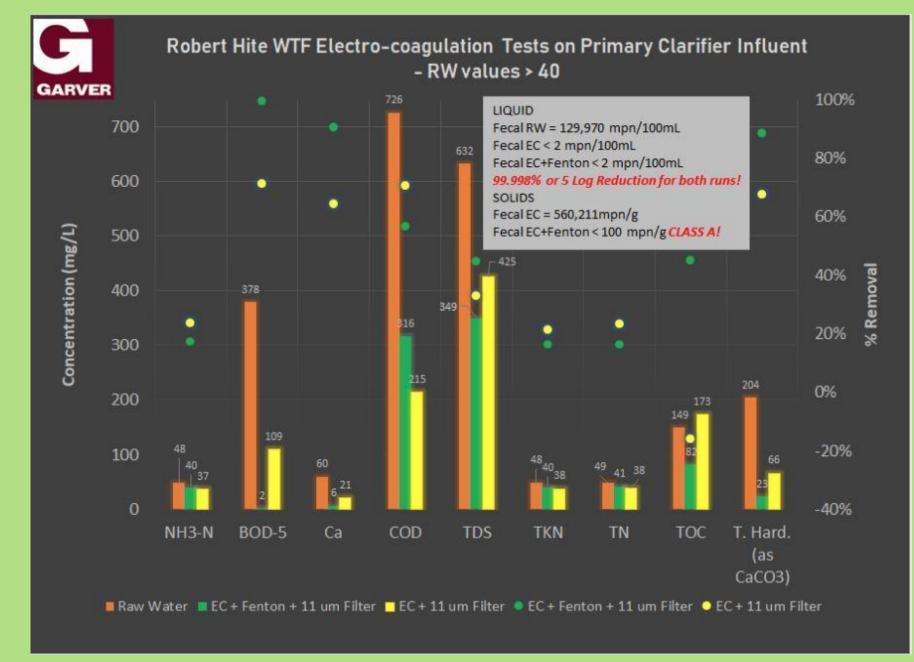
STLC and TTLC leach tests

Canadian Oil Tar Sands Mature Fine Tails

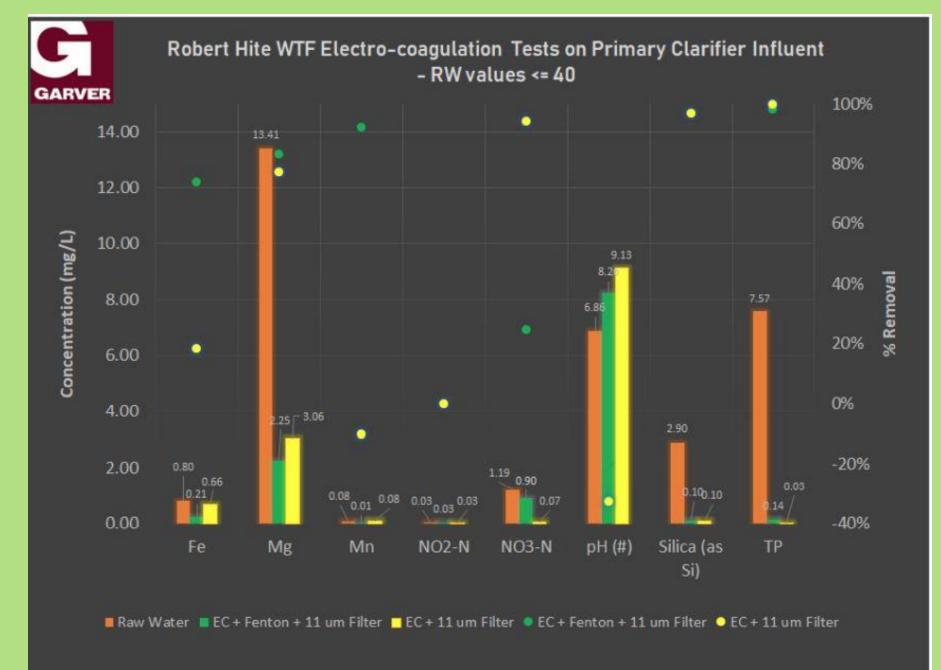
Filtered Solids after 10 days		
Moisture in filtered solids	0.20%	Wt% moisture
Compressive Strength	47.6	Kilopascal (kPa)
Compressive Strength	6.9	Ibs/sq in (psi)
Specific Gravity	2.222	
Mature Fine Tails	Sa	mple 100819 - 1 As Received
pH	7.2	pH Units
Fluid Ratio - oil	0.50%	Vol%
Fluid Ratio - Water	74.50%	Vol%
Fluid Ration - Sediment	25%	Vol%

Solids concentration of 25% after 40 years went to 99.8% in 10 days, By adding the electro mode of force to drive the normal reaction in nature.


Post Powell EC-Filter Press



Denver Central Wastewater Treatment (CWT)



Primary Clarifier Influent, Robert Hite Water Reuse Facility Denver Colorado

Henry Fenton's reagent is the addition of hydrogen peroxide (H2O2) with ferrous iron 60

Henry Fenton's reagent is the addition of hydrogen peroxide (H2O2) with ferrous iron⁶¹

Vanderbilt Study

Municipal Wastewater Nashville, Tennessee

	Raw	Treated	<u>% Removal</u>
COD	490	26	94.70
Total Solids	602	401	43.40
Suspended Solids	73	7	90.4
Settleable Solids	21	5	76.20
Total Hardness	127	11	91.30
Alkalinity	267	11	95.80
pН	6.88	7.02	
IOD	0.98	<0.1	89.80
BOD	220	9	95.90
Coliform	318,000/ml	0	99 +
Phosphates	38	0	99 +

Coagulated Solids from Industrial Process, 75% of the Wastewater Converted to Fertilizer.

29,000 mg/l BOD Waste to Fertilizer

Sample ID	44624-25				
Sample Detail	(Cooker Water			
mg/l	As Received	Dry Weight	Percentage		
Total Kjeldahl Nitrogen (TKN)	1,580	9,190	0.92%		
Phosphorus	18,970	110,300	11.03%		
Potassium	3,686	21,430	2.14%		
Calcium	1,272	7,395	0.74%		
Magnesium	1,100	6,395	0.64%		
Sodium	17,590	102,300	10.23%		
Sulfur	15,000	87,200	8.72%		
Iron	37,770	219,600	21.96%		
Phosphate P205	43,400	252,000	25.20%		
Potash K20	4,440	25,800	2.58%		

<u>Army Corp of Engineers</u> 30 gpm Huntsville, Alabama

Adjustable to 3, 6, and 12 volt between the blades to accommodate for the conductivity of the water.

<u>Office of Navel Research</u> <u>6 gpm Skid Mounted Unit Oxnard, California</u>

	Contaminant	Befo
	Aluminum	
	Arsenic	
	Barium	
	Boron	
	Cadmium	
Typical	Calcium	
• •	Chromium	
Removal	Cobalt	
	Copper	(
Rates	Cyanide (free)	
	Fluoride	
	Gold	
	Iron	
	Lead	
1	Magnesium	
Metals	Manganese	
	Mercury	
And	Molybdenum	
	Nickel	
Minerals	Platinum	
	Selenium	
	Silicon	
	Silvon	

Contaminant	Before (mg/l)	After (mg/l)	% Removal
Aluminum	224	ND (0.7)	99+
Arsenic	0.076	ND (<0.002)	97
Barium	0.014	ND (<0.001)	93
Boron	4.86	1.41	70
Cadmium	0.125	ND (<0.004)	96
Calcium	1,321	21.4	98
Chromium	139.	ND (<0.1)	99+
Cobalt	0.1238	0.0214	82
Copper	0.7984	ND (<0.0020)	99+
Cyanide (free)	723	ND (<0.02)	99+
Fluoride	1.1	0.415	62
Gold	5.72	1.38	75
Iron	68.34	0.19	99+
Lead	0.59	0.0032	99+
Magnesium	13.15	0.04	99+
Manganese	1.061	0.018	98
Mercury	0.72	ND (<0.003)	98
Molybdenum	0.35	0.029	91
Nickel	183	0.07	99+
Platinum	4.4	0.68	84
Selenium	68	38	44
Silicon	21.07	ND (0.10)	99+
Silver	0.0081	0.0006	92
Tin	0.213	ND (<0.020)	90
Vanadium	0.262	ND (<0.002)	99+
Zinc	221	0.140	99+ ⁶⁷

Nutrients

Contaminant	Before (mg/l)	After (mg/l)	% Removal
Ammonia	49	19.4	60
Nitrate	11.7	2.6	77
Nitrite	21	12	42
Nitrogen TKN	1,118.88	59.08	94
Phosphate	28	< 0.2	99+
Potassium	200	110	45
Sulfate	104	68	34

Removal rates improve significantly when combined with processing aids like micro algae, microbes, and or hydrogen peroxide.

Biologicals

Contaminant	Before	After	% Removal
Bacteria	110,000,000 cfu	2,700 cfu	99+
Coliform	318,000,000 cfu	ND (<1) cfu	99+
E. coli	>2,419.2 mpn	ND (<0.01) mpn	99+
Enterococcus	83 mpn	ND (<10) mpn	82
Total Coliform	>2,419.2 mpn	ND (<0.1) mpn	99+
Cyanotoxin	97.1 ug/l	0.001 ug/l	99

Powell Water

Pesticides

Contaminant	Before (mg/l)	After (mg/l)	% Removal
Aldrin	0.063	ND (0.001)	98
Chlorpyriphos	5.87	ND (0.03)	99+
Cypermethrin	1.3	0.07	94
DDT	0.261	0.002	99+
Diazinon	34	0.21	99+
Lindane	0.143	ND (0.001)	99+
Propetamphos	80.87	0.36	99+

Hydrocarbons					
Contaminant	Before (mg/l)	After (mg/l)	% Removal		
Benzene	90.1	0.3590	99+		
Ethyl Benzene	428	0.372	99+		
MP-Xylene	41.6	0.057	99+		
MTBE	21.58	0.0462	99+		
O-Xylene	191	0.416	99+		
РСВ	0.0007	ND (<0.0001)	85		
Petroleum Hydrocarbons	72.5	ND (<0.2)	99+		
Toluene	28,480	0.227	99+ Powell Water		

Dyes					
Contaminant	Before (NTU)	After (NTU)	% Removal		
Ref. 006-691	125.1	12.1	90		
Ref. 006-692	129.4	2.2	98		
Ref. 006-854	68.30	0.68	99+		
Ref. 006-851	2,340	4.5	99+		

Radioisotopes	
---------------	--

Contaminant	Before	After	% Removal
Americium-241	71.99 pCi/l	0.57 pCi/l	99+
Plutonium-239	29.85 pCi/l	0.29 pCi/l	99+
Radium	1093 pCi/l	0.10 pCi/l	99+
Uranium	0.13 mg/l	0.0002 mg/l	99+

Organic & Inorganics Compounds

Contaminant	Before	After	% Removal
BOD ₅	1,050 mg/l	14 mg/l	98
NTU	35.38 mg/l	0.32 mg/l	99+
TSS	1,560 mg/l	8 mg/l	99+
PFOS	421 ng/l	<2.36 ng/l	99
PFOA	1,540 ng/l	<3.97 ng/l	99

BTEX in 260,000 mg/l TDS Water United Arab Emirates 130 gpm System

	_mg/l	Untreated	Treated	% Removed	
•	Benzene	90.1	0.359	99.6%	
•	Toluene	28.48	0.227	99.9%	
•	Ethyl benzene	428	0.372	99.9%	
•	M, P - Xylene	41.6	0.057	99.8%	
•	O-Xylene	191	0.416	99.7%	

<u>United Arab</u> <u>Emirates</u> 130 gpm system At an Oil Refinery

pH adjustment Electrocoagulation

Vacuum Clarification

80 degrees cooling

Red Desert, Wyoming Frack Flow Back and Produced Water Mixture

Hydraulically-Dredged Wastewater Hudson River Project Results are reported in ug/L except as noted

Analyte	Raw	Post EC & Clarification	% Reduction
Arsenic	30	3.2	89.3
Cadmium	10	0.32	96.8
Chromium	330	13.0	96.1
Copper	230	3.2	98.6
Iron	22,000	29.0	99 +
Lead	590	3.2	99 +
Mercury	0.72	0.0031	99 +
Zinc	2,200	6.4	99+
TOC (mg/l)	5.8	2.1	65.5
TSS (mg/l)	210	4.0	98.1
Total P (mg/l) 2.3	0.03	98.7

TOSHIBA

The plant water is electrocoagulated, clarified, and returned to the incoming city water tank.

The people in Thailand drink bottled water.

They probably do not believe me when I tell them that I wash my car and water my lawn with drinking water.

250 gpm Unit, Thailand

Disinfection with Electricity

Eliminates Disinfection By-products Associated with Chlorination -Dechlorination and Ultraviolet Light Shadow Challenges

Thank You! Questions www.powellwater.com

Electrocoagulation Equipment Powell Water System, Inc.

Scott Powell, President

(303) 241-2489

Design, Build and Operation

Lagoon Logistics, LLC Jeff Couch, President (970) 231-9937 Sundine Enterprises

Micro Algae Assemblages Sundine Enterprises, Inc. Judd Sundine, Horticulturist (720) 363-0548

United States Patent Number 10358361 B2 & 11407660 B2. System and Method for Remediation of Wastewater Including Aerobic, Anaerobic and Electrocoagulation Technology. This patent is wholly licensed by Powell Water Systems, Inc.