

Water Pro Conference

National Rural Water Association

September 25-27, 2023

Gaylord at the Rockies

6700 North Gaylord Rockies Blvd

Aurora Colorado 80019

Powell Water Micro Algae System (PWMAS) Natures Way of Cleaning Water for Abundant Use

Electrocoagulation & Support Equipment www.powellwater.com Powell Water System, Inc. Scott Powell, President

(303) 241-2489

Design, Build and Operation

Lagoon Logistics, LLC Jeff Couch President (970) 231-9937

Microalgae Microbe Assemblages Sundine Enterprises, Inc. Judd Sundine, Horticulturist (720) 363-0548

United States Patent Number 10358361 B2 & 11407660 B2. System and Method for Remediation of Wastewater Including Aerobic, Anaerobic and Electrocoagulation Technology. This patent is wholly licensed by Powell Water Systems, Inc.

Powell Water Micro Algae System Biological and Electrical Treatment Advantages

Broad Spectrum Treatment

- **PFOA/PFOS (Removal in Both Water and Solids)**
- Solid Removal with Biological Conversion
- Arsenic Removal Below Detectable Limits
- Lead & Copper Removal
- Cadmium & Zinc ions
- Effective Disinfection
- Nutrient Removal
- Lower Initial Investment
- Lower Operating Costs

Proposed New Discharge Limits

Colorado

- PFOA PFOS PFAS 0.004 ug/l
- Lead 0.015 mg/l Action Level
- Copper 1.3 mg/l Action Level
- Arsenic 0.02 ug/l
- Phosphate 0.025 mg/l

Missouri

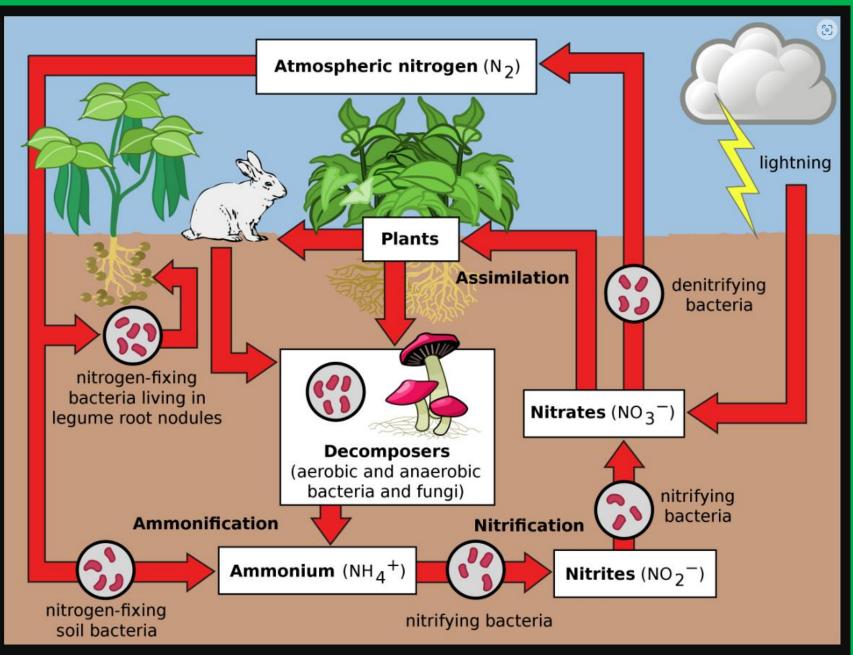
- Ammonia 0.60 mg/l
- Phosphorus 0.50 mg/l

Virtually all EPA wastewater discharge permits will have more restrictive effluent standards between now and 2027.

Powell Water Micro Algae Systems Innovative Lagoon and Electrocoagulation 90% reduction in electrical aeration costs. 90% reduction in accumulated lagoon solids. 90% reduction in carbon dioxide creation. 50% reduction in disinfection costs.

Primary Treatment

Tertiary Treatment


Powell Water Microalgae System (PWMAS) Patent No: US 10,358,361 B2 & 11407660 B2

Micro Algae Converts Carbon Dioxide to Oxygen 1.4 pounds of Carbon Dioxide to make 1 pound of Oxygen

2.5 pounds of carbon dioxide per pound of BOD6.4 pounds Carbon Dioxide per pound of ammonia.

Microbes convert ammonia to nitrogen gas.

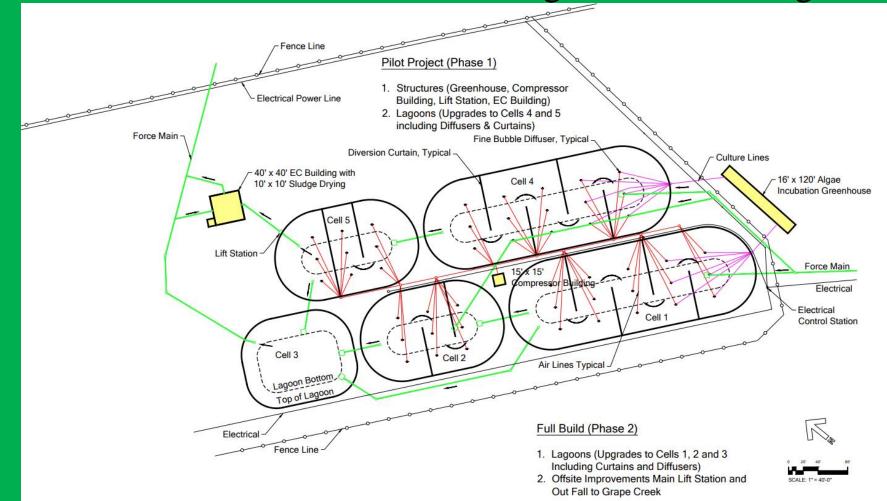
Cultivated Micro Algae and Microbes

Eliminate mechanical aeration

Eliminate Odor

Reduce aeration electricity cost by 90%

Organics are Consumed in the Lagoons Drying Bed for Inorganics

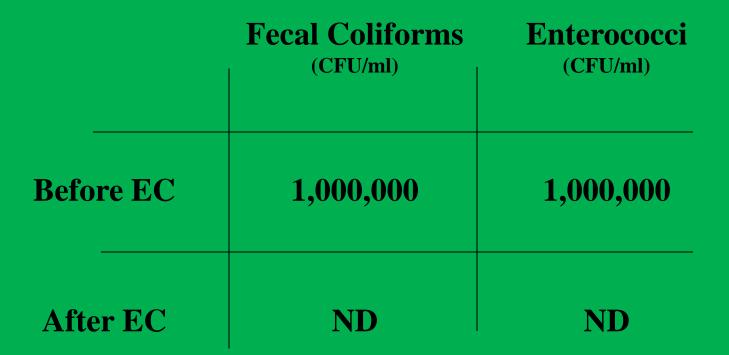


Electric Coagulated solids repel water Reduced sludge volume for disposal **Solids dry** completely

Enhance Existing Lagoon System

PWMAS Modification Details Greenhouse and Electrocoagulation Buildings

Economic Reasons for PWMAS Colorado Sanitation District: 1,100 people 700 taps \$40,000 annual median household income **SBR UV PWMAS** \$14,100,000 \$4,400,000 Capital Personnel 8 hours/day 2 hours/day 2027 EPA Regs No Yes **CO₂ Reduction** No Yes

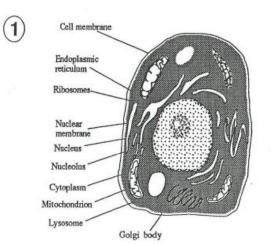

Prices shown in 2017 United States Dollars.

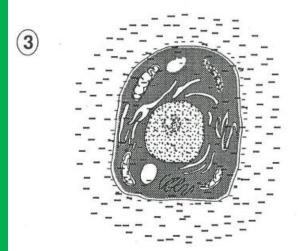
Cadmium Copper Lead Zinc The Doe Run Company Brushy Creek Mine Storm Water Run Off				
	Cadmium	Copper	Lead	Zinc
Raw water ppb	36	23	1,285	6,675
Powell EC ppb	0.29	0.38	0.76	18
% Reduction	99.19%	98.35%	99.94%	99.73%
Action Level	5	1,300	150	5,000

Cadmium Copper Lead Zinc
Berkeley Pit, Butte Montana, Horseshoe Bend Mine
Acid Mine Drainage

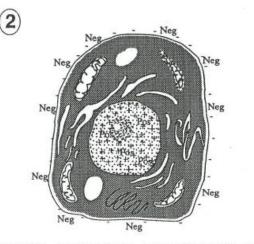
	Cadmium	Copper	Lead	Zinc
Raw water ppb	1,014.65	30,983.5	3.08	260,050
Powell EC ppb	4.61	6.860	< 0.6	29
% Reduction	99.55%	99.98%	>80.5%	99.99%
Action Level	5	1,300	150	5,000

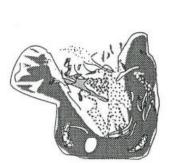
Bacterial Components




Data Source: Rosario and Adkinson

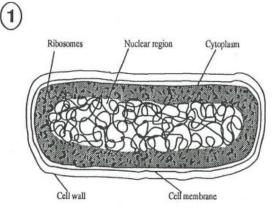
Bacteria Cell Walls are Broken



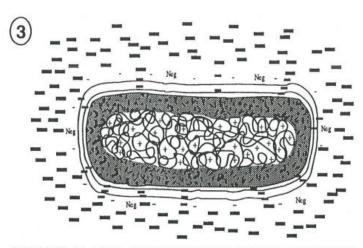

NORMAL NUCLEATED MICROORGANISM

INDUCED PLASMA SURCHARGE ON OUTER MEMBRANE

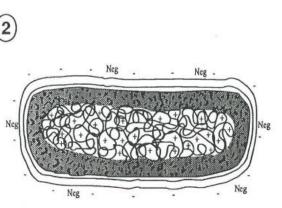
TYPICAL ELECTRICAL NET SURFACE CHARGE ON OUTER MEMBRANE



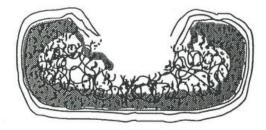
(4)


CAVITATION AND DNA DESTRUCTION (DEATH OF THE MICROORGANISM)

Cell Contents are Denatured

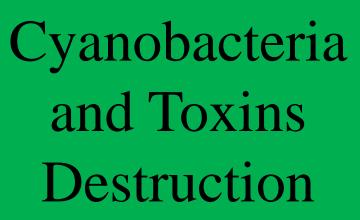

ELECTROPHORETIC / ELECTROCIDAL- EFFECT ON NON- NUCLEATED MICROORGANISMS "CHEMICAL FREE"

NORMAL NON-NUCLEATED MICROORGANISM



INDUCED PLASMA SURCHARGE ON OUTER MEMBRANE

TYPICAL ELECTRICAL NET SURFACE CHARGE ON OUTER MEMBRANE



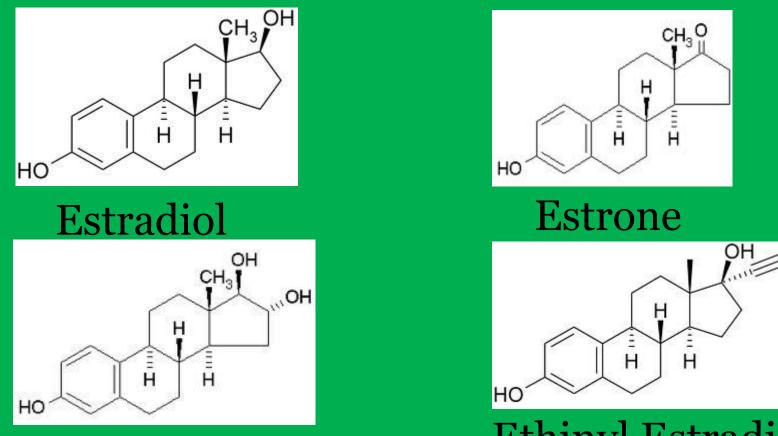
CAVITATION AND DNA DESTRUCTION (DEATH OF THE MICROORGANISM)

50 gpm

Celina, Ohio Grand Lake Drinking Water

Mono Species of Planktatherix (Neurotoxic Species) Cyanobacteria

Raw Lake Water 97.1 ug/l was reduced to 0.001 ug/l with Powell EC


Virus Destruction

	Phage, <i>E</i> . <i>coli</i> (Pfu/ml)	Phage, B. subtilis (Pfu/ml)	PMMoV (copies/ml)	HPyV (copies/ml)
Before EC	12,800	2,220	60,100	100,000
After EC	ND	ND	ND	ND

Data Source: Rosario and Adkinson

Estrogenic Endocrine Disruptors

Estriol

Ethinyl Estradiol

Deformed white sucker fish with both male and female sex tissue have been discovered near Colorado wastewater treatment plants on the South Platte River and Boulder Creek. Female fish far outnumber the male fish near the plants.

https://www.chron.com/news/nation-world/article/Discovery-of-deformed-fish-scares-scientists-1679259.php

Swine Production Facility

A 5,000 head Swine Facility uses 6,000,000 gallons of water per year (16,438 gpd).

Swine lagoon water is an excellent fertilizer

Total Nitrogen	0.617%	6,170mg/l
Organic Nitrogen	0.166%	1,660mg/l
Ammonium Nitrogen	0.450%	4,500mg/l
Nitrate Nitrogen	<0.001%	
Phosphorus	0.089%	890mg/l
Phosphorus as P2O5	0.204%	2,040 mg/l
Potassium	0.365%	3,650mg/l
Potassium as K2O	0.438%	4,380mg/l
Moisture	93.000%	930,000mg/l
Total Solids	7.000%	70,000mg/l
Organic Matter	5.500%	55,000mg/l
Ash	1.500%	15,000mg/l

Problems using Swine Lagoon fertilizer Crop growing season limits the time lagoon water can be applied to the ground. One year holding time in the lagoons.

Limits on nitrogen and phosphate allowed per acre by government regulation. **Purchase additional land with pipeline for irrigation.**

Weather events that overflow the lagoon causing environment concerns down stream. **Put a roof over the lagoon.**

Odor associated with lagoons. Spray Rose Oil to mask the lagoon odor.

Powell Water Micro Algae System Solution Reduction of nitrogen and phosphate without water reuse. Constituent gal / day Reduction 15,288 7.00% Water to Land 100.00% **Organic** Nitrogen () Ammonium Nitrogen 99.45% 0.15 99.80% 0.15 Phosphorus Potassium 0.00% 55 Ash insoluble ()

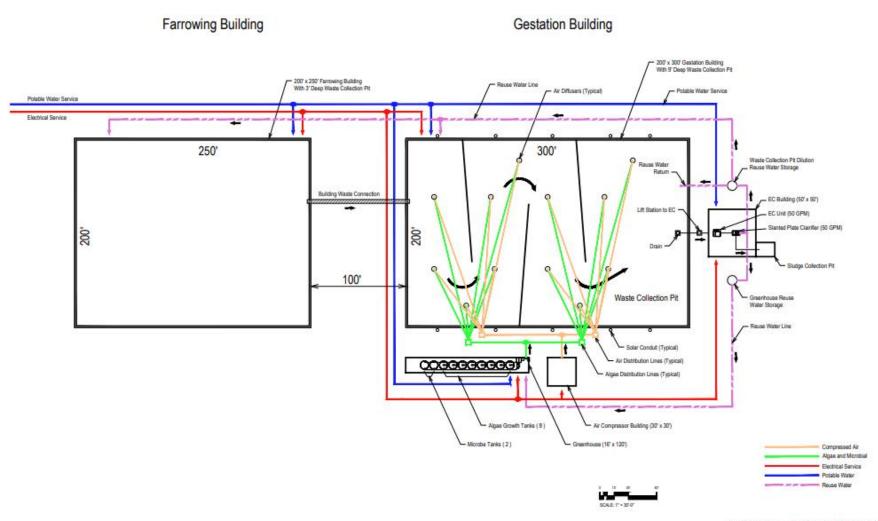
99% reduction in the amount of land required for lagoon water disposal. Water disposal reduced by 1,150 gpd. Powell Water Micro Algae System Solution Reduction of nitrogen and phosphate wash water reuse. Constituent Reduction gal / day 2,137 87.00% Water 100.00% **Organic** Nitrogen () 99.97% Ammonium Nitrogen 0.15 0.15 99.97% Phosphorus Potassium 87.00% 55 Ash insoluble ()

99% reduction in the amount of land required for lagoon water disposal. Water disposal reduced by 14,300 gpd.

Covered lagoon under floor

Slated Floor to Drain Water from Swine

One Year Liquid Storage Under the Floor


One Year Liquid Storage Under the Floor

Fans to pull air into the facility and expel toxic fume buildup under the floor

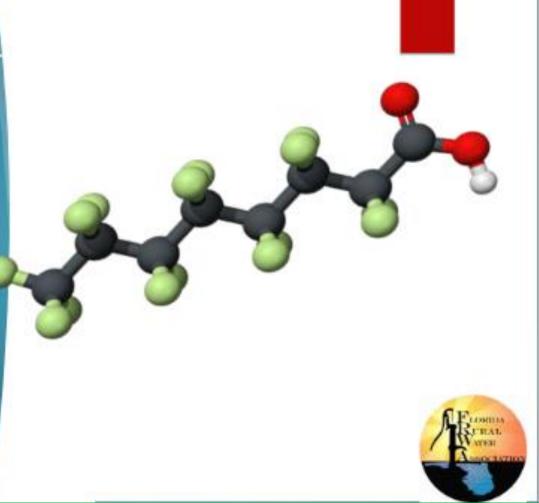
PWMAS Under The Existing Building

Copyright 2021 Lagoon Logistics, LLC. All Rights Reserved

PWMAS Advantage Oxygen Gas replaces toxic Methane, Ammonia, Carbon Dioxide and Hydrogen Sulfide under the floor.

Odor is eliminated because oxygen is up to 20 mg/l.

Land irrigations needs is reduced because of nitrogen and phosphate reduction by PWMAS.


Capital cost of the PWMAS is less than land purchase price savings.

Operating cost is reduced by solids disposal Savings.

This 3D model of a PFOA (perfluorooctanoic **acid**) molecule.

This is the acid form of PFOS.

- Gray spheres represent *carbon atoms* linked together in a chain; there are eight of them, so "octane" is used in the name.
- Green spheres represent fluorine atoms bonded to carbon atoms.
- Red spheres represent oxygen atoms.

PFOA PFOS PFAS

Oil and Water Repellency, Temperature Resistance, Friction Reduction JAMES HOPE (Jamie) Florida Rural Water Association Wastewater Technician/Trainer 2970 Wellington Circle Tallahassee, FL 32309 Cell 352.318.3321 jamie.hope@frwa.net ³⁶

Powell Water	PFOA Liquid ng/l (ppt)	% Removal Liquid	PFOA Solids ng/l (ppt)	PFOS Liquid ng/l (ppt)	% Removed Liquid	PFOS Solids ng/l (ppt)
Landfill Leachate as Received	1,540			421		
Electrocoagulation + H2O2	< 3.97	99.74%	70	< 2.36	99.44%	20

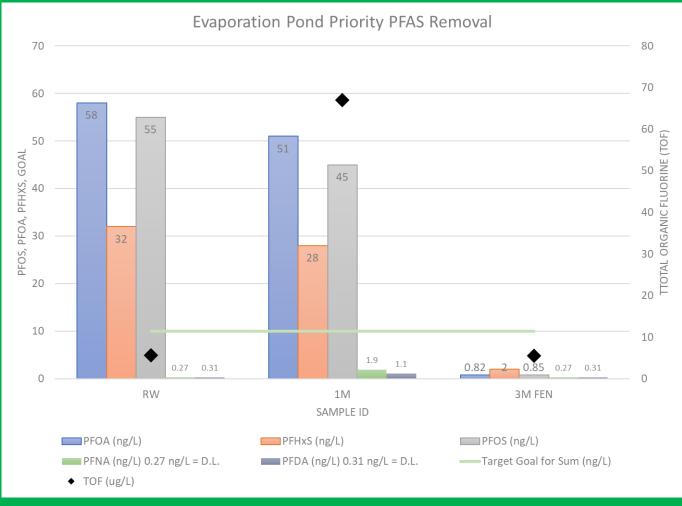
Powell Water Systems not only separates the PFAS from the water, but also destroys the PFAS in the coagulate solids. US Patent No. 8,048,279

Fluoride Carbon Bond Destruction in the Solids-One of the Strongest Single Bonds in Chemistry

Powell Water	PFOA Liquid ng/l (ppt)	% Removal Liquid	PFOA Solids ng/kg (ppt)	PFOS Liquid ng/l (ppt)	% Removal Liquid	PFOS Solids ng/kg (ppt)
Landfill Leachate as received	1,540			421		
Electrocoagulation Aluminum Blades	193	87.47%	31,900	11.1	97.36%	8,230
Electrocoagulation Iron and Aluminum	284	81.56	12,600	11.6	97.24%	3,390
Electrocoagulation Iron H2O2	< 3.97	<mark>99.74%</mark>	70	< 2.36	<mark>99.44%</mark>	20

EPA Proposed Regulation Limit for PFOA & PFOS is 4 ng/l (ppt)

Fluoride Carbon Bond Destruction Bureau of Reclamation



EP – Lab Data

- Longer, E-Fenton run time resulted in better removal for PFOA, PFOS, PFHxS, PFDA and PFNA
- 1M FEN led to 255% to 600% increase in PFDA and PFNA
- 3M FEN brought PFNA and PFDA back to ND
- TOF increase in 1M Centrate samples may be indicator of C-F destruction

BUREAU OF — CLAMATION

Eric Dole @ Garver 602 881 0186

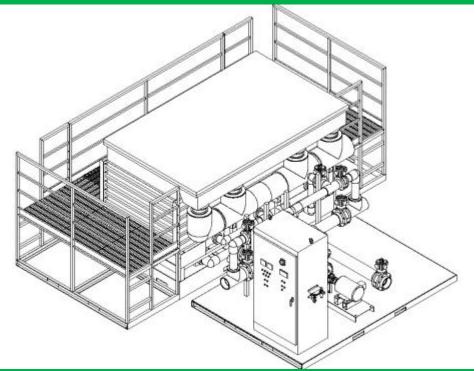
EPA Proposed Regulation PFOS PFOA is less than 4 ppt

PFAS Destruction on a Commercial Scale

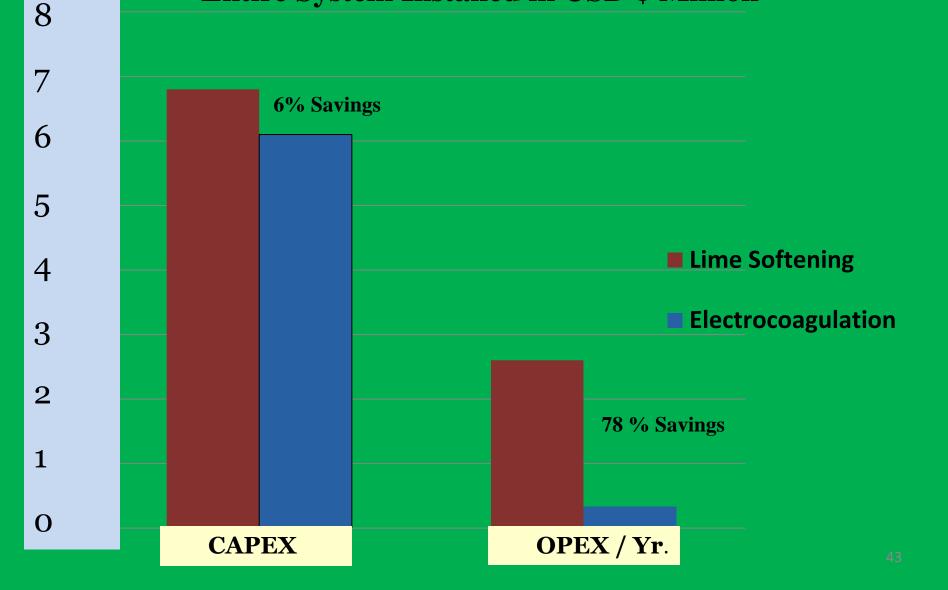
Costs for electrocoagulation treatment meeting MCL-TCLP criteria are less than comparable treatments which only capture PFAS for final expensive destruction through incineration, encapsulation, of deep well injection.

The Powell electrocoagulation system can be permanently <u>installed. or</u> skid mounted trailers for treating water on a short-term basis.

Powell Water Systems Inc systems are operating in the United States and many countries around the world.



Chemical Lime Softening Compared to Powell Electrocoagulation for Steam Assisted Heavy Crude Oil Extraction.


As a practical mater the most difficult aspect of Lime Softening is the truck traffic flow to haul in the lime and haul away the coagulated solids.

If you do not add contaminates to the water, you do not need to remove them from the water.

Powell 500 gpm EC Assembled skid is 18 ft by 17 ft, 7 ft tall

500 GPM Lime Softening vs. ElectrocoagulationMILLIONCAPITAL EXPENSE – OPERATING EXPENSEEntire System Installed in USD \$ Million

Operating Expense /Yr. (OPEX)

					Lime Softeni	ng
1,5 M					Electrocoagula	ition
1 M					U	
900 K						
850 K						
800 K						
750 K						
700 K						
650 K						
600 K						
550 K						
500 K						
450 K						
400 K						
350 K						
300 K						
200 K						
150 K		_				
100 K						
50 K						
25 K						
15 K						
	Electricity	Operating	Chen	nicals	Consumables	Sludge
		Labor				Disposal

We need to change the way we approach water softening treatment

Traditionally: we try to solve one water treatment problem at a time, and we ignore the overall consequences of the traditional water treatment step.

For example: Hard water in out homes block our pipes, makes our skin uncomfortable after bathing, and makes washing our clothes more difficult.

Traditional Solution: Ion exchange water softening removes calcium, magnesium, and hardness from the water used in the house.

Unintended problem: The added Total Dissolved Solids (TDS) being discharged back into the river makes it more difficult for the cites down stream to make drinking water! The problem is compounded in each city.

Innovative Solution: Municipal Electrocoagulation, at the well head before potable water distribution, will remove calcium, magnesium, and hardness, in a solid form, with clean electricity, eliminating the need for in home ion exchange water softening.

Overall Benefit: Soft Water in every home in the city. Less cleaning product TDS added to sewer. Cleaner softer drinking water for the city downstream.

Well Water Eastern Colorado City

Table 1: Summary of Potable Water Quality (all wells combined, samples collected between January and March 2020)

<u>Parameter</u>	<u>Unit</u>	<u>Average</u>	<u>Maximum</u>
TDS	mg/L	268	295
рН	s.u.	7.5	8.0
Alkalinity	mg/L as CaCO3	141	157
Calcium	mg/L	105	121
Magnesium	mg/L	35	50
Hardness	mg/L as CaCO3	407	506
Sulfate	mg/L	11	14
Chloride	mg/L	10	12

Hardne	ss Classification	as Calcium Carbon	ate in mg/l
Soft water	less than 17	Hard water	121 to 180
Slightly hard	17 to 60	Very hard	above 181
Moderately hard	61 to 120	This city	407 mg/l

City Wastewater Entering the Sewer

Table 2: Summary of Influent Wastewater Quality

(samples collected between January and March 2020)

<u>Parameter</u>	<u>Unit</u>	<u>Average</u>	<u>Maximum</u>
TDS	mg/L	553	611
рН	s.u.	8.0	8.6
Alkalinity	mg/L as CaCO3	300	348
Calcium	mg/L	135	229
Magnesium	mg/L	38	60
Hardness	mg/L as CaCO3	493	819
Sulfate	mg/L	13	27
Chloride	mg/L	95	135

Environmental Protection Agency (EPA) **National Secondary Drinking Water Regulations for Total Dissolved Solids (TDS) is** 500 mg/l

TDS Increases From Wells to Sewer

TDS increase	285 mg/l	106%
Calcium increase	30 mg/1	29%
Magnesium increase	3 mg/l	9%
Sulfate increase	2 mg/l	18%
Chloride increase	85 mg/l	850%

Colorado Department of Public Health and Environment (CDPHE) would like a Total Dissolved Solids (TDS) reduction of 150 to 200 mg/l

Home Water Softeners Add TDS

Ion exchange water softeners add two Sodium ions and two chloride ions into the home water for each Calcium ion removed from the water.

To regenerate the ion exchange resin, saturated sodium chloride is used. The sodium, chloride, magnesium, calcium, and hardness is returned to the water going to the sewer plant.

In home water softeners added 85 mg/l chloride & 55 mg/l sodium, or **140 mg/l TDS** to the well water entering the home creating sewer water leaving the home.

Softening Well Water with Electricity

Calcium removal at 90% of 105 mg/l Magnesium removal at 90% of 35 mg/l Total TDS removed as solids Sodium Chloride that was not added Effective reduction of TDS at sewer 94 mg/l <u>32 mg/l</u> 126 mg/l <u>140 mg/l</u> 266 mg/l

CDPHE TDS desired reduction is 150 to 200 mg/l **If you do not add the Sodium Chloride to the water in the home, you do not need to take it out at the sewer.** Every Home benefits from Soft Water. The Towns Down Stream receive Soft Water.

Evaporative Cooling

When water changes from a liquid to vapor 967 BTU / pound is required.

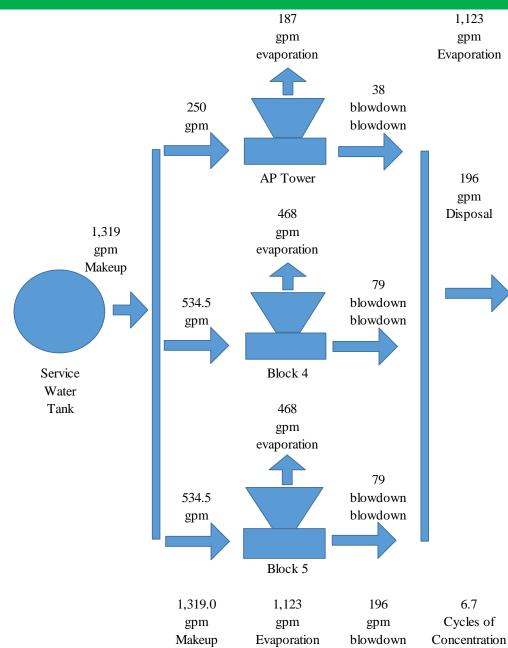
We naturally cool our bodies as our skin produces water droplets that evaporate.

As the water vapor evaporates solids in the liquid water concentrates.

Cooling Towers evaporate water vapor to cool the remaining water liquid.

This works great until the solids concentrated in the water plate out on the cooling tower.

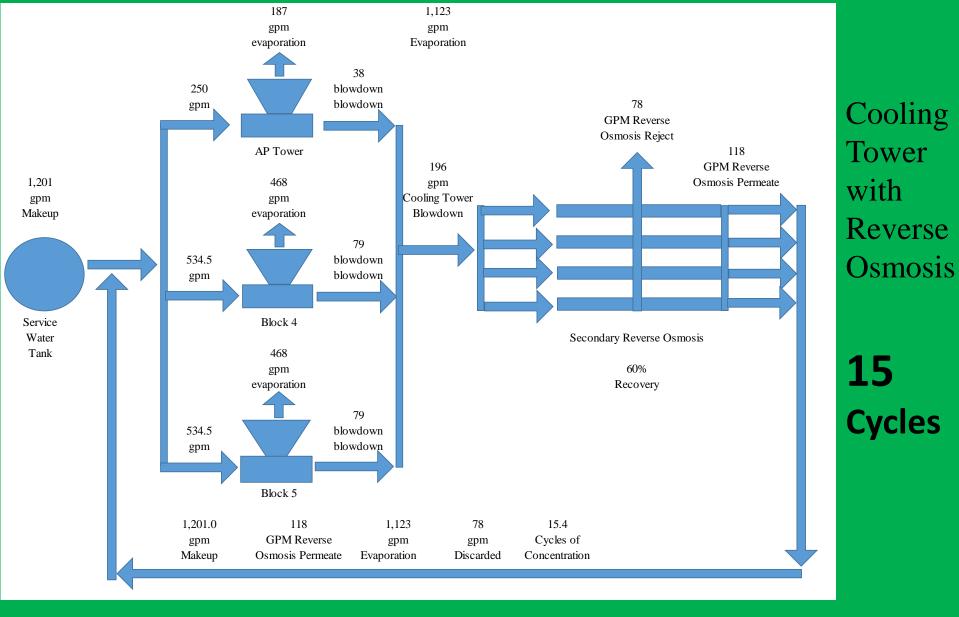
The problematic solids include Silica, Phosphates, and Dust.


The annoying solids include Calcium, Magnesium, and Hardness.

The lease offensives include Sodium and Chloride.

BTU = British Thermal Unit: The amount of heat required to raise 1 pound of water 1 degree Fahrenheit (F).

1 Ton of cooling = 12,000 BTU/hour


Cooling Towers

Natural Gas Electrical Generation Facility

	GPM	Percent
Service		
Water	1,319	100.00%
Cooling		
Process	1,123	85.14%
Discarded	1	
Water	196	14.86%

Zero Liquid Discharge 196 GPM Evaporation Ponds 6.7 Cycles 52

Reverse Osmosis benefit: 118 gpm recovery for evaporation 78 gpm as disposal water

Zero Liquid Discharge **78 GPM** Evaporation Ponds

53

Sparingly Soluble Salts Removed as Solids

Remove the **Silica, Phosphate**, and Dust from the cooling tower blowdown water between the cooling tower and reverse osmosis.

This allows a higher Reverse Osmosis Permeate percentage.

This reduces the amount of Reverse Osmosis Reject going to the evaporation disposal pond allowing Zero Liquid Discharge Powell Electrocoagulation removes the silica and phosphate after cooling tower concentration and before ultra filtration.

Two 500 gpm EC Systems in Parallel

Electrocoagulated, Ultra Filtration Reject Water is Pulled into a Vacuum Tower

Coagulated solids are pumped into a dumpster at 23% solids by weight.

The solids continue to dewater over time.

Solids Handling

"When compared with alum treatment, electrocoagulation provided approximately **83% less sludge** volume and a **76% improvement in filtration rate.**"

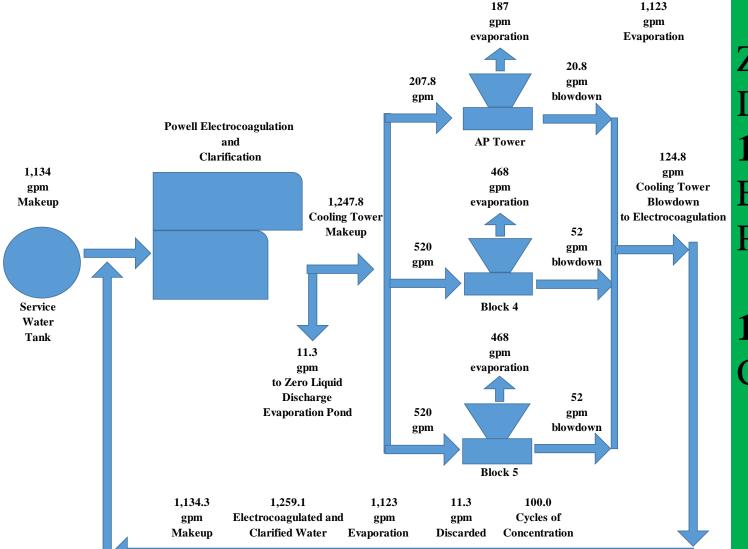
EPA / 540 / S-937504 September 1993 Emerging Technology Summary, Superfund Innovative Technology Evaluation

Innovative Alternative

- Remove the **Silica and Phosphate by 95%** from the service water.
- Remove the Calcium, Magnesium, and Hardness by 90% from the service water.
- After evaporating the water in the cooling tower by 90%, return the remaining 10% with the concentrated solids to be blended with the service water for Powell Electrocoagulation and coagulated solids separation.

Service Water to Cooling Tower

Gas Fired Electrical Generation		Water quality on 2/	27/2020
	Raw	Blowdown	Concentration
	Service	EQ	difference
Metals	Water	Tank	EQ / Service
Calcium (Ca) mg/l	40.6	250.3	6.17
Calcium (CaCO3) mg/l	101.5	625.8	6.17
Magnesium (Mg) mg/l	10.1	61.5	6.09
Magnesium (MgCO3) mg/l	41.6	253.4	6.09
Sodium (Na) mg/l	14.7	148.1	10.07
Potassium (K) mg/l	8.0	20.8	2.60
Silica (Si) mg/l	2.7	18.1	6.70
Silica (SiO2) mg/l	5.8	38.7	6.67
Phosphate (P) mg/l	0.0	4.3	
Iron (Fe) mg/l	0.0	0.1	
Boron (B) mg/l	0.0	0.3	
Anions			
Fluoride (F-) mg/l	0.7	5.0	7.14
Chloride (Cl-) mg/l	11.7	131.4	11.23
Nitrite (NO2) mg/l	0.7	0.0	0.00
Sulfate (SO4) mg/l	78.6	975.5	12.41
Bromide (Br) mg/l	0.0	0.0	
Nitrate (NO3) mg/l	3.2	20.0	6.25


Cooling Tower chemical addition is required to keep the calcium and magnesium from plating out on the cooling tower.

The added sulfate is more than the calcium.

Silica increased by evaporation by 6.7 times.

Sulfate increased 12.41 times because of chemical addition.

Service Water to Powell Electrocoagulation to Cooling tower

Zero Liquid Discharge **11.3 GPM** Evaporation Ponds.

100 Cycles of Concentration

Blowdown Water after 100 Cycles

Gas Fired Electrical Generation	Raw	100 Cycles	% in Raw
	Service	Blowdown	Service
Metals	Water	11th pass	Water
Calcium (Ca) mg/l	40.6	40.6	100%
Calcium (CaCO3) mg/l	101.5	101.5	100%
Magnesium (Mg) mg/l	10.1	10.1	100%
Magnesium (MgCO3) mg/l	41.6	41.6	100%
Sodium (Na) mg/l	14.7	1,584.0	10776%
Potassium (K) mg/l	8	728.0	9100%
Silica (Si) mg/l	2.7	1.9	72%
Silica (SiO2) mg/l	5.8	3.9	67%
Phosphate (P) mg/l	0	0.0	
Iron (Fe) mg/l	0	0.0	
Boron (B) mg/l	0	0.0	
Anions			
Fluoride (F-) mg/l	0.7	70.0	10000%
Chloride (Cl-) mg/l	11.7	1,170.0	10000%
Nitrite (NO2) mg/l	0.7	31.0	4424%
Sulfate (SO4) mg/l	78.6	1,302.9	1658%
Bromide (Br) mg/l	0	0.0	
Nitrate (NO3) mg/l	3.2	19.2	600%

Problematic Ions like Silica and Phosphate are less than Raw Service Water

Annoying Ions like Calcium, Magnesium, and Hardness remained the same.

Infinity Soluble ions like Sodium and **Chloride increased 100 times.**

The 100 Cycle TDS of 5,052 mg/l could be increased to 70,000 mg/l with the existing metallurgy. Economics Reasons for Raw Service Water Treatment with Blowdown The operating cost for the Powell EC system is less than cooling tower chemical cost.

The capital cost for the Powell EC system is less than the reduction in evaporation pond construction savings.

The existing evaporation pond is twice the salinity of sea water and sooner or later those solids will turn into a Jell.

Replacement evaporation ponds for 78 gpm, 2.3 gpm evaporation per acre, and \$500,000 per acre is \$17,000,000.

Powell electrocoagulation, clarification and 11.3 gpm evaporation pond is \$10,000,000.

Water savings is 35,000,000 gallons per year

Red Rocks Community College

- Water Quality Management (WQM) classes start at 6pm, and meet once per week
- Varied schedules- online, remote, in-person, accelerated, etcetera
- Prior Learning Assessment- turn experience into college credit
- All courses have Training Units

• Certificates

- Associates of Applied Science (2 years)
- Bachelors of Applied Science (4 years)
- Chelsea Campbell; Faculty Chelsea.Campbell@rrcc.edu

Bureau of Reclamation

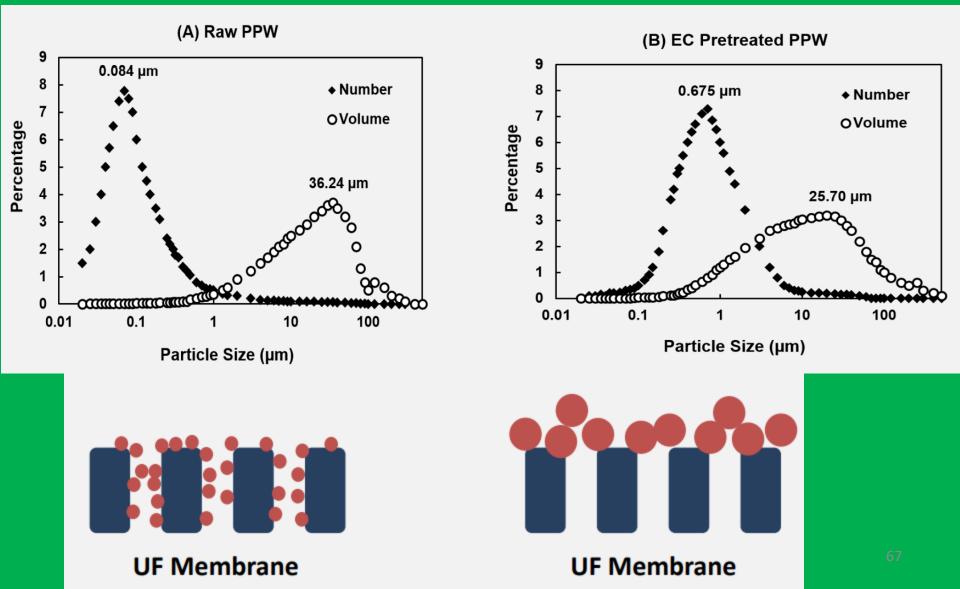
For more information on this project, please contact Eric Dole.

EJDole@GarverUSA.com 303.721.6932

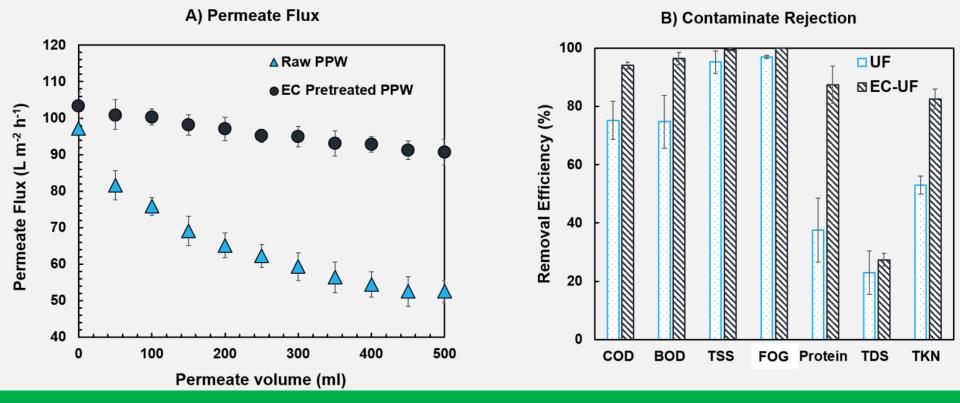
PROJECT PARTNERS

Desalination and Water Purification Research Program Pitch to Pilot for Fiscal Year 2019 NO. BOR-DO-19-F017

MICKLEY & ASSOCIATES

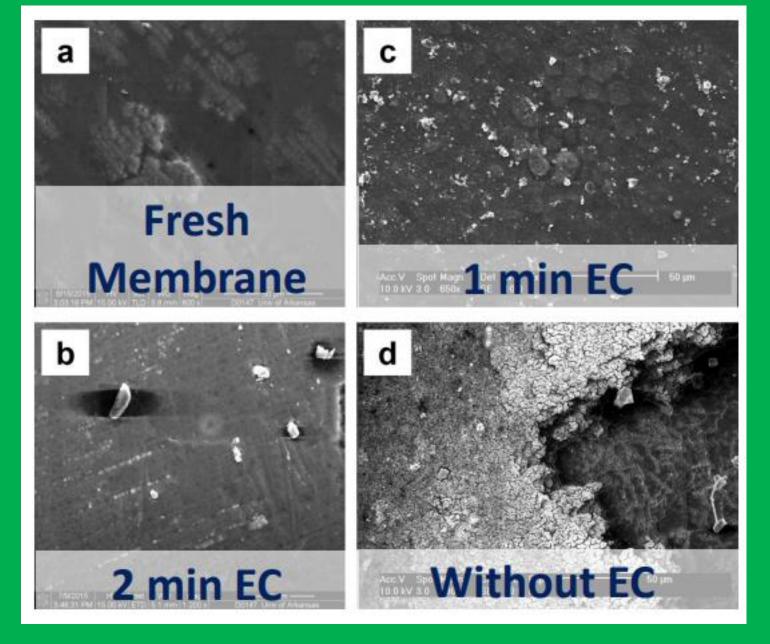


Consistent High Quality Permeate Without Irreversible Fouling

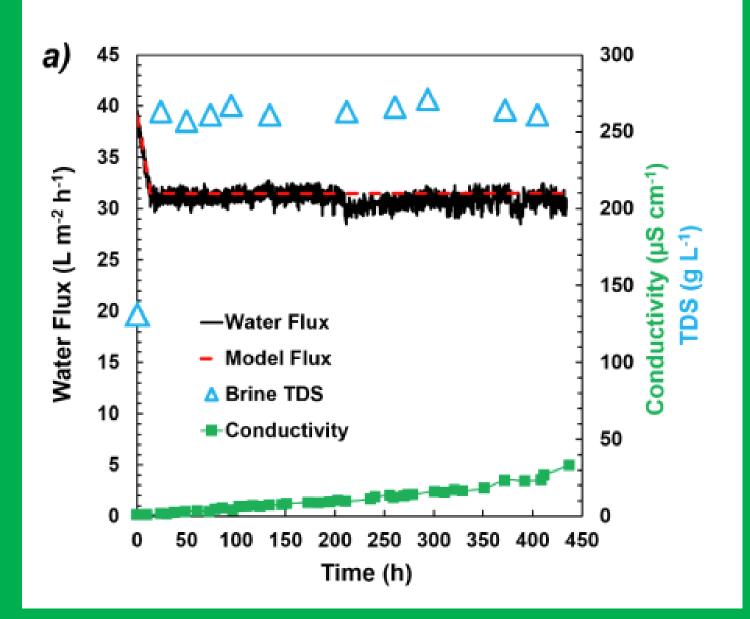

	10t	h Percer	ntile	Average			90t	90th Percentile		
TARGET CONSTITUENT	Raw Water	Filtered EC Supernatant	Permeate	Raw Water	Filtered EC Supernatant	Permeate	Raw Water	Filtered EC Supernatant	Permeate	
TH as CaCO3 (mg/L)	699.7	174.3	0.1	743.38	428.68	1.38	810.4	723.4	4.86	
рН	8.1	7.9	7.1	8.3	8.8	8.8	8.7	9.3	9.9	
TDS (mg/L)	1683	1515	5	2848.7	1686.2	11.4	1992	1966	21.2	
Silica (mg/L)	15.61	0.30	0.3	17.7	1.39	0.3	19.4	3.24	0.3	
TSS (mg/L)	5.0	5	5	5.3	12.5	5	5.3	17.8	5	
Total Phosphate (mg/L)	0.11	0.05	0.05	0.16	0.06	0.05	0.19	0.05	0.05	
TOC (mg/L)	5.79	4.84	0.5	6.38	5.18	0.51	7.34	5.46	0.5	
*ORP (mV)	180	-141.8	-182.9	194.00	-112.40	-124.60	211	-70	-61.2	
*Temperature ([°] C)	15.86	13.19	12.86	18.09	16.99	16.96	19.94	21.23	21.33	
Total Coli (mpn/100 mL)	1.0	1.0	1.0	1.18	1.67	1.0	1.0	1.0	1.0	
OPERATING PARAMETER	10t	h Percer	ntile	Average			90th Percentile			
Energy Intensity (kWh/kgal)		39.6		44.9			51.4			
Pressure (psi)		312		346			386			
Permeat Flow (gpm)	0.72			0.80			0.86			
Perm Flux (gfd)	11.9		13.2			14.3				
Concentrate Flow (gpm)	0.80		0.88			0.97				
% Recovery 3-stg RO		43%			48%			52%		
**% Recovery Overall		49%			54%			59%		

**@ 400 ppm TDS w/ Blend 98% EC RO water recovery with implementation of recommended modifications from original test parameters

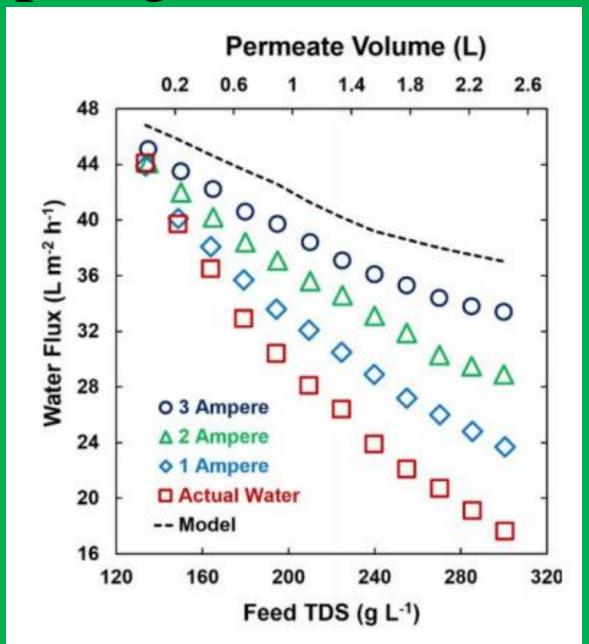
Particle Size Distribution larger particles stay on top of the membrane



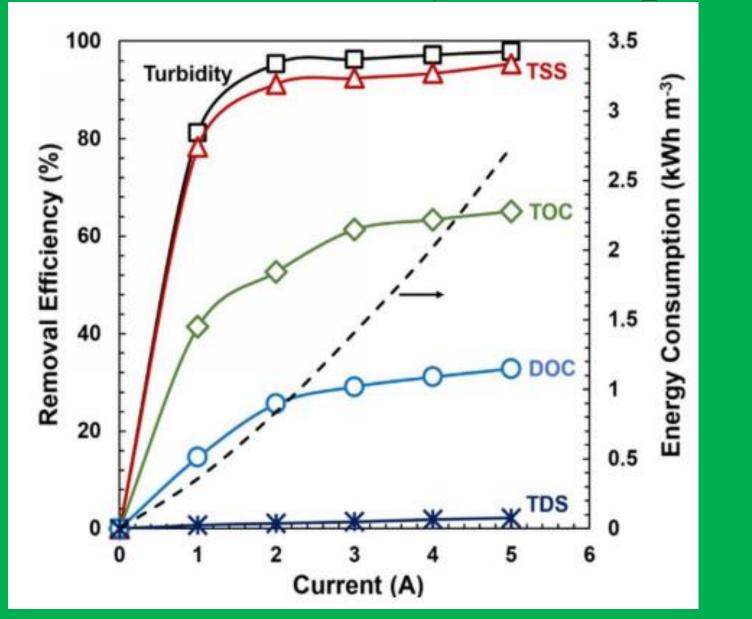
Ultra - Filtration Performance Significantly Improved With EC Pretreatment

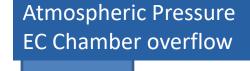

35% increase in permeate flow rate with Powell EC pretreatment

Scanning Electron Microscopy Imaging Shows Reduced Fouling via EC Pretreatment



Electrocoagulated water cleans fresh membranes


400 + Hours With No Reduction in Water Flux


Amperage vs Flux Decline

Removal Efficiency vs Amperage

Powell Electrocoagulation Typical Flow Diagram

Influent

Water and Coagulated Solids separation.

- 1. Vacuum Clarifier
- 2. Slant plate clarifier
- 3. Decantation
- 4. Lagoon
- 5. Dissolved Air Flotation

Atmospheric Pressure Electrocoagulation Chamber Off the shelf dissolvable electrocoagulation blades

Powell Water Electrocoagulation

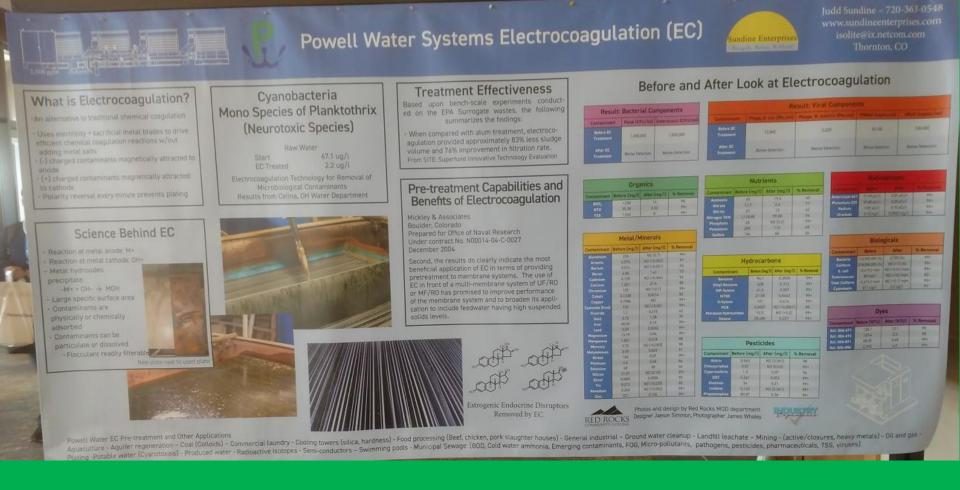
uses electricity and sacrificial metal blades/plates to coagulate solids

50 gpm Tertiary Treatment Oklahoma WWTP

USED

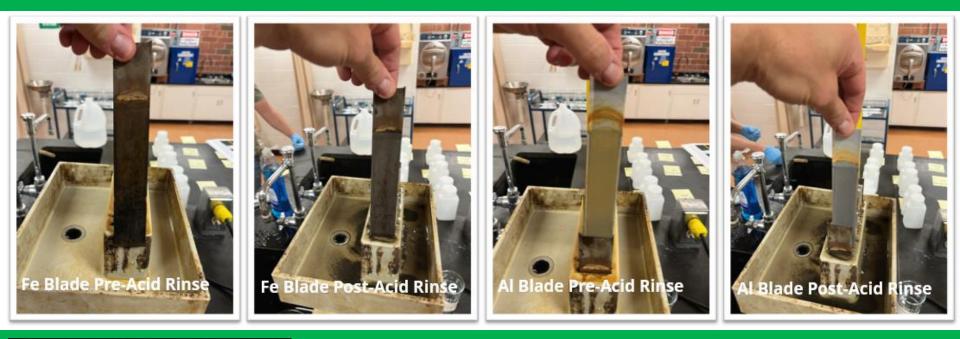
Courtesy: University of AZ Presentation "Electrocoagulation and Water

Sustainability: Silica and Hardness Control" | June 26, 2008 | James C. Baygents and


James Farrell

Electro-Coagulation vs. Chemical Coagulation

	Potassium Alum KAI(SO4) ₂ ·12(H2O)	Ferric Chloride FeCl3·6(H2O)	Electro-coagulation Fe2+ or Al3+
Alum and ferric chloride cause salinity increase b/c of salt counter-ions	Potassium K = 39.10 Aluminum Al = 26.98 Sulfur S = 32.06 Oxygen O = 16.00 Hydrogen H = 1.01 KAl(SO4)2*12(H2) = 474.44	Iron Fe = 55.85 Chlorine Cl = 35.45 Hydrogen H = 1.01 Oxygen O = 16.00 FeCl3*6(H2O) = 270.32	Metal Sheet
Total Dissolved Solids reduction in place of TDS increase	17.6 to 1 5.7% Al	4.8 to 1 20.66% Fe	1 to 1 100%


"When compared with alum treatment, electrocoagulation provided approximately **83% less sludge** volume and a **76% improvement in filtration rate."** (*EPA / 540 / S-937504 September 1993 Emerging Technology*)

Blade Maintenance

Change out 0 to 6 blades per day

Sulfuric Acid Blade Cleaning CIP

Influent Supply feed
Clean in Place feed
City Water feed
Clean in Place return
Influent Supply return

- <u>Plates</u> are placed vertically within the patented reaction chamber
- <u>Direct current</u> is applied to the <u>first and last blade</u>
- Untreated water is introduced into the bottom of the chamber
- Water is dispersed <u>evenly</u> as it <u>moves upward</u> through the blades
- <u>Water conducts electricity throughout</u> the chamber

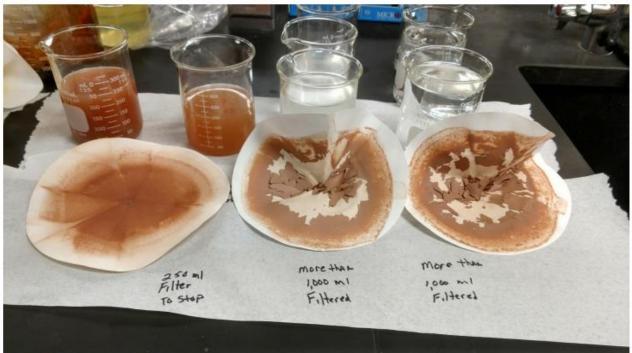
Samsung 600 gpm unit South Korea

- Metal blades change from a solids to an ion when electrons pass through.
- Electron flooded water neutralizes charged particles, Van der
 Waals force, making them separable (precipitate) from the water
- Treated water
 overflows to secondary
 separation such as
 ponds, clarifiers,
 filters, or etcetera.

Central Wastewater Treatment Facility (CWT) 50 gpm, Denver, Colorado

 Heavy metals precipitate into acid-resistant oxide sludge that passes the Toxic Classification Leaching Procedure (TCLP), making the sludge non-hazardous The Powell Electrocoagulation Process is Scalable to accommodate larger flow rates. 600 gpm is the manufacturing economy of scale and then parallel units can be used to treat any size flow rate.

500 gpm 1,866,240 square inch Wet blade surface area



50 gpm 186,624 square inch Wet blade surface

EC Solids Dry in the Oxide Form

Coal Mine Surface Run Off Water Powell Electrocoagulated Solids

Sludge from EC:

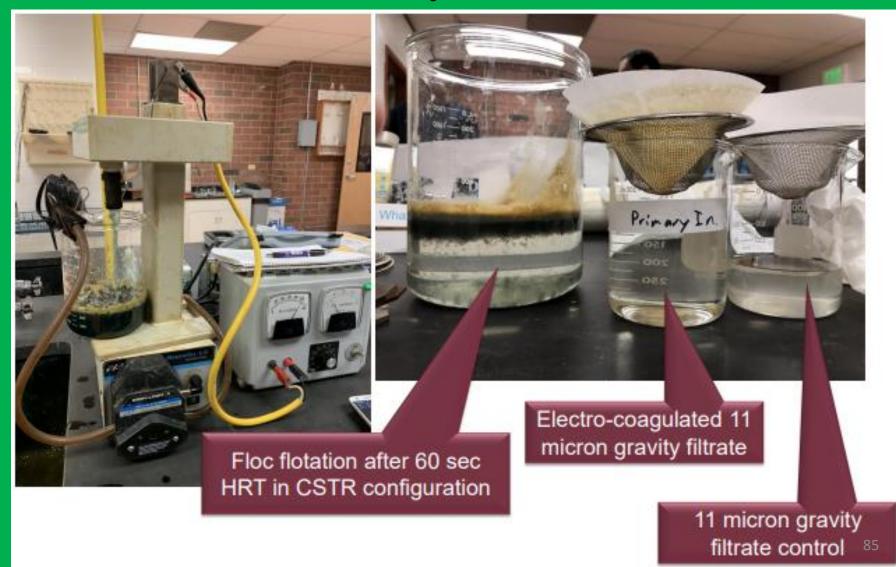
- Solids dewater completely
- <u>Metals</u> are non-hazardous as <u>oxides</u>

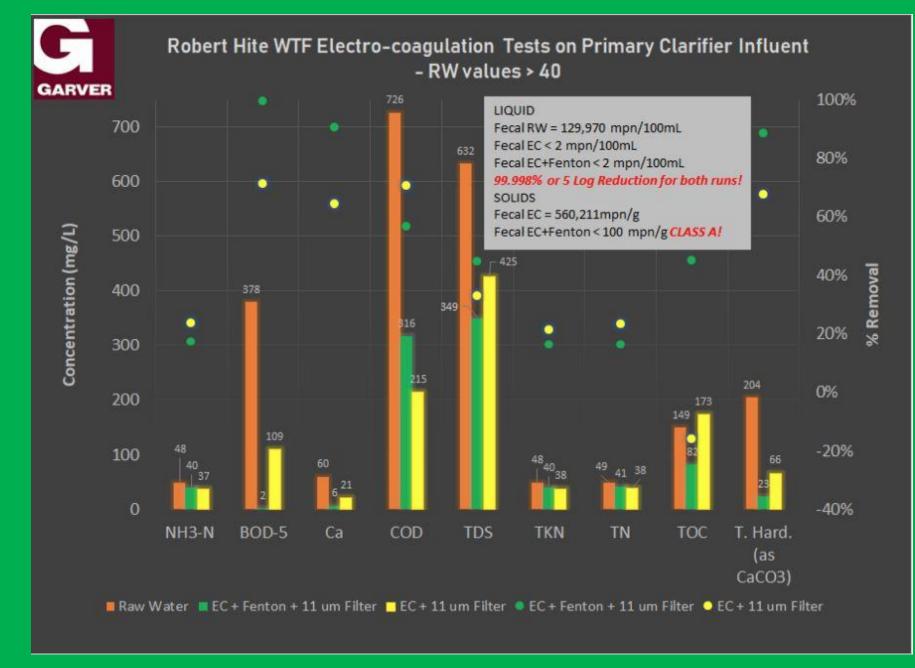
- Does <u>not leach</u> at ambient landfill pH
- **Passes EPA TCLP** and California Title 22

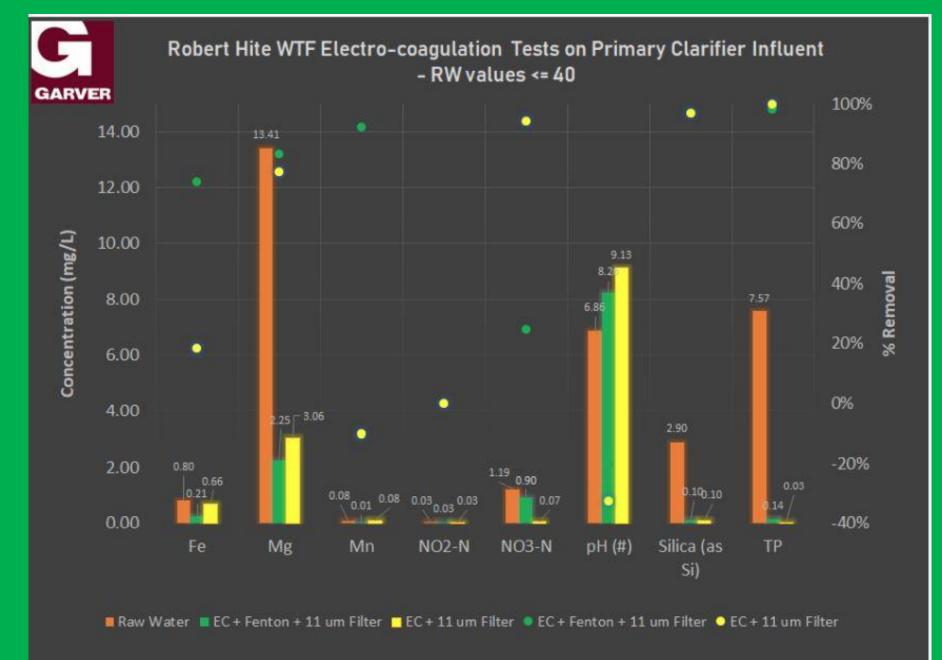
STLC and TTLC leach tests

Canadian Oil Tar Sands Mature Fine Tails

Filtered Solids after 10 days		
Moisture in filtered solids	0.20%	Wt% moisture
Compressive Strength	47.6	Kilopascal (kPa)
Compressive Strength	6.9	lbs/sq in (psi)
Specific Gravity	2.222	
Mature Fine Tails	Sample 100819 - 1 As Receiv	
pH	7.2	pH Units
Fluid Ratio - oil	0.50%	Vol%
Fluid Ratio - Water	74.50%	Vol%
Fluid Ration - Sediment	25%	Vol%


Solids concentration of 25% after 40 years went to 99.8% in 10 days, By adding the electro mode of force to drive the normal reaction in nature.


Post Powell EC-Filter Press


Denver Central Wastewater Treatment (CWT)

Primary Clarifier Influent, Robert Hite Water Reuse Facility Denver Colorado

Henry Fenton's reagent is the addition of hydrogen peroxide (H2O2) with ferrous iron

Henry Fenton's reagent is the addition of hydrogen peroxide (H2O2) with ferrous iron⁸

EC Field Demo on Ultrafiltration Plant Solids

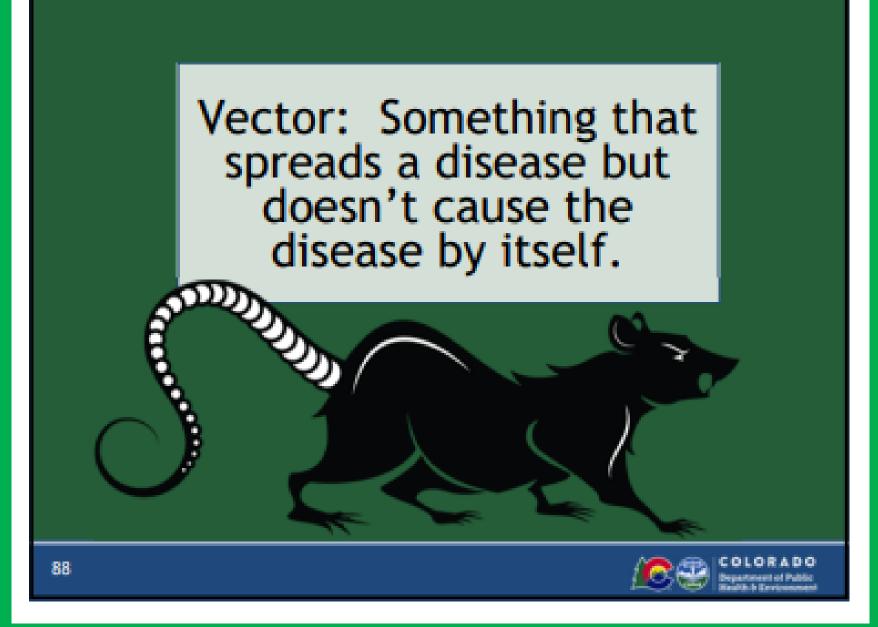
Maple Grove UF WTP, Lakewood CO

Hazen

Vector Attraction Reduction- fecal coliforms in sewage sludge must be less than 1,000 Most Probable Number (MPN) / gram of total solids on a dry mater bases. EPA/600/R-22/194 | January 2023 | www.epa.gov/research.

Class "B" With Respect to Pathogens

- Geometric Mean <2,000,000 MPN/g fecal coliforms OR
- Use one of five PSRPs (Processes to Significantly Reduce Pathogens)
 - Aerobic Digestion
 - Air Drying
 - Anaerobic Digestion
 - Composting
 - Lime Stabilization
 - Other as approved by EPA Region 8


CDPHE Colorado Rural Water Association April 5. 2023 Presentation⁸

Class "A" With Respect to Pathogens

- Fecal < 1000 MPN/g OR</p>
- Salmonella s.p. < 3 MPN/4g AND
- Use one of seven PFRPs (Processes to Further Reduce Pathogens)
 - Composting
 - Heat Drying
 - Heat Treatment
 - Thermophilic Aerobic Digestion
 - Beta Ray or Gamma Ray Irradiation
 - Pasteurization

CDPHE Colorado Rural Water Association April 5. 2023 Presentation

CDPHE Colorado Rural Water Association April 5. 2023 Presentation

Vector Attraction Reduction

- 38% Volatile Solids Reduction (VSR)
- Anaerobic bench scale test (40 days)
- Aerobic bench scale test (30 days)
- Aerobic* SOUR =< 1.5 mg O₂/hr @ 20 °C
- Aerobic 14+ days @ >40 °C (avg >45 °C)
- pH > 12+ for 2 hr then 11.5+ for 22 hr
- Dry to 75% when stabilized solids used (digested)
- Dry to 90% when unstabilized solids used (undigested)
- Sub. injection (no significant after 1 hr)
- Surface application w/incorporation (w/in 6 hrs) *(SOUR not for anaerobically digested sludge.)

CDPHE Colorado Rural Water Association April 5. 2023 Presentation

Vanderbilt Study

Municipal Wastewater Nashville, Tennessee

	Raw	<u>Treated</u>	<u>% Removal</u>
COD	490	26	94.70
Total Solids	602	401	43.40
Suspended Solids	73	7	90.4
Settleable Solids	21	5	76.20
Total Hardness	127	11	91.30
Alkalinity	267	11	95.80
pН	6.88	7.02	
IOD	0.98	<0.1	89.80
BOD	220	9	95.90
Coliform	318,000/ml	0	99 +
Phosphates	38	0	99 +

29,000 mg/l BOD Waste to Fertilizer

Sample ID	44624-25			
Sample Detail	Cooker Water			
mg/l	As Received Dry Weight Percenta			
Total Kjeldahl Nitrogen (TKN)	1,580	9,190	0.92%	
Phosphorus	18,970	110,300	11.03%	
Potassium	3,686	21,430	2.14%	
Calcium	1,272	7,395	0.74%	
Magnesium	1,100	6,395	0.64%	
Sodium	17,590	102,300	10.23%	
Sulfur	15,000	87,200	8.72%	
Iron	37,770	219,600	21.96%	
Phosphate P205	43,400	252,000	25.20%	
Potash K20	4,440	25,800	2.58%	

Coagulated Solids from Industrial Process, 75% of the Wastewater Converted to Fertilizer.

<u>Army Corp of Engineers</u> 30 gpm Huntsville, Alabama

Adjustable to 3, 6, and 12 volts between the blades to accommodate for the conductivity of the water.

<u>Office of Navel Research</u> <u>6 gpm Skid Mounted Unit Oxnard, California</u>

Amperage controlled Power supply **Polarity** Reversing **Full wave** rectification of the AC power to DC power

Typical
Removal
Rates

Metals And Minerals

Contaminant	Before (mg/l)	After (mg/l)	% Removal
Aluminum	224	ND (0.7)	99+
Arsenic	0.076	ND (<0.002)	97
Barium	0.014	ND (<0.001)	93
Boron	4.86	1.41	70
Cadmium	0.125	ND (<0.004)	96
Calcium	1,321	21.4	98
Chromium	139.	ND (<0.1)	99+
Cobalt	0.1238	0.0214	82
Copper	0.7984	ND (<0.0020)	99+
Cyanide (free)	723	ND (<0.02)	99+
Fluoride	1.1	0.415	62
Gold	5.72	1.38	75
Iron	68.34	0.19	99+
Lead	0.59	0.0032	99+
Magnesium	13.15	0.04	99+
Manganese	1.061	0.018	98
Mercury	0.72	ND (<0.003)	98
Molybdenum	0.35	0.029	91
Nickel	183	0.07	99+
Platinum	4.4	0.68	84
Selenium	68	38	44
Silicon	21.07	ND (0.10)	99+
Silver	0.0081	0.0006	92
Tin	0.213	ND (<0.020)	90
Vanadium	0.262	ND (<0.002)	99+
Zinc	221	0.140	99+ ⁹⁸

Nutrients

Contaminant	Before (mg/l)	After (mg/l)	% Removal
Ammonia	49	19.4	60
Nitrate	11.7	2.6	77
Nitrite	21	12	42
Nitrogen TKN	1,118.88	59.08	94
Phosphate	28	< 0.2	99+
Potassium	200	110	45
Sulfate	104	68	34

Removal rates improve significantly when combined with processing aids like micro algae, microbes, and or hydrogen peroxide. ⁹⁹

Biologicals

Contaminant	Before	After	% Removal
Bacteria	110,000,000 cfu	2,700 cfu	99+
Coliform	318,000,000 cfu	ND (<1) cfu	99+
E. coli	>2,419.2 mpn	ND (<0.01) mpn	99+
Enterococcus	83 mpn	ND (<10) mpn	82
Total Coliform	>2,419.2 mpn	ND (<0.1) mpn	99+
Cyanotoxin	97.1 ug/l	0.001 ug/l	99

Pesticides

Contaminant	Before (mg/l)	After (mg/l)	% Removal
Aldrin	0.063	ND (0.001)	98
Chlorpyriphos	5.87	ND (0.03)	99+
Cypermethrin	1.3	0.07	94
DDT	0.261	0.002	99+
Diazinon	34	0.21	99+
Lindane	0.143	ND (0.001)	99+
Propetamphos	80.87	0.36	99+

Hydrocarbons

Contaminant	Before (mg/l)	After (mg/l)	% Removal
Benzene	90.1	0.3590	99+
Ethyl Benzene	428	0.372	99+
MP-Xylene	41.6	0.057	99+
MTBE	21.58	0.0462	99+
O-Xylene	191	0.416	99+
РСВ	0.0007	ND (<0.0001)	85
Petroleum Hydrocarbons	72.5	ND (<0.2)	99+
Toluene	28,480	0.227	99+

Dyes				
Contaminant	Before (NTU)	After (NTU)	% Removal	
Ref. 006-691	125.1	12.1	90	
Ref. 006-692	129.4	2.2	98	
Ref. 006-854	68.30	0.68	99+	
Ref. 006-851	2,340	4.5	99+	

Contaminant	Before	After	% Removal
Americium-241	71.99 pCi/l	0.57 pCi/l	99+
Plutonium-239	29.85 pCi/l	0.29 pCi/l	99+
Radium	1093 pCi/l	0.10 pCi/l	99+
Uranium	0.13 mg/l	0.0002 mg/l	99+

Organic & Inorganics Compounds

Contaminant	Before	After	% Removal
BOD ₅	1,050 mg/l	14 mg/l	98
NTU	35.38 mg/l	0.32 mg/l	99+
TSS	1,560 mg/l	8 mg/l	99+
PFOS	421 ng/l	<2.36 ng/l	99
PFOA	1,540 ng/l	<3.97 ng/l	99

BTEX in 260,000 mg/l TDS Water United Arab Emirates 130 gpm System

	<u>mg/l</u>	Untreated	Treated	% Removed
•	Benzene	90.1	0.359	99.6%
•	Toluene	28.48	0.227	99.9%
•	Ethyl benzene	428	0.372	99.9%
•	M, P - Xylene	41.6	0.057	99.8%
•	O-Xylene	191	0.416	99.7%

<u>United Arab</u> <u>Emirates</u>

130 gpm system At an Oil Refinery

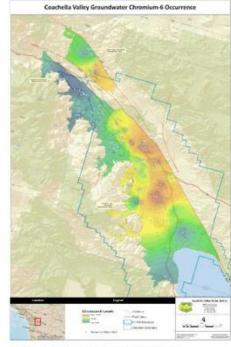
pH adjustment Electrocoagulation

Vacuum Clarification

80 degrees cooling

Hydrogen Sulfide

Paramete	r Tested	For:	Hyd	rogen S	Sulfide	Date:			10-Mar-2015		
Water Sou	urce:	Well W	ater: W	TP #1							
						H ₂ S		ORGANICS			
EC Run #	<u>Blade</u> Type	<u>RT</u> (Sec)	<u>Volts</u>	<u>Amps</u>	<u>KWH</u> /1K Gal	ug/l (ppb)	<u>%</u> <u>Remvd</u>	<u>UVA254</u>	<u>%</u> Remvd	<u>UVT</u>	рН
RAW (Untreated) Water				2432		0.241		57.3	7.8		
1Fe	Fe	60	96	1.7	2.57	10	99.6%	0.049	79.7%	89.3	8.7
2Fe	Fe	30	96	1.7	1.29	18	99.3%	0.054	77.6%	87.9	8.4
3Fe	Fe	10	96	1.7	0.43	61	97.5%	0.108	55.2%	77.8	8.2
4Fe	Fe	5	96	1.7	0.21	84	96.5%	0.126	47.7%	74.7	х
5Fe	Fe	2.5	96	1.7	0.11	145	<mark>94.0%</mark>	0.183	24.1%	65.5	x


Taste and Oder Elimination for Well WaterBert Gerber PE (407) 834 9104

GerberPumds

Hexavalent Chrome ions in the ground water.

EC Case Study - Anionic Spent Brine

- Cr6 in Coachella Valley, CA groundwater between <1 to 21 parts per billion (ppb) – new MCL = 10 ppb
- 23 wells equipped with Strong Base Anion (SBA) treatment systems
 - 99.95% water recovery
 - 51 MGD capacity with 27,600 cubic feet of resin
- Require regeneration every 2 to 3 months @ CRRF – 600 cf / day
- Regenerated with a 10-12% <u>NaCl</u> solution

Courtesy: Coachella Valley Water District, Coachella Valley, CA

Naturally Occurring

120,000 ppm Total Dissolved Solids Brine Regeneration

THE CENTRAL RESIN REGENERATION FACILITY

ADMINISTRATIVE

The 60,000 square foot CRRF is designed to regenerate 600 ft³ of exhausted SBA resin per day w/12% NaCl. A fully redundant train and a 3rd regen vessel, provides additional flexibility if the facility becomes a regional SBA regeneration facility.

> To Feedwater Recycle Tank and Brine Crystalizer

ECUNITO

Ion Exchange Regeneration Brine Disposal cost is three times the operational cost of ion exchange.

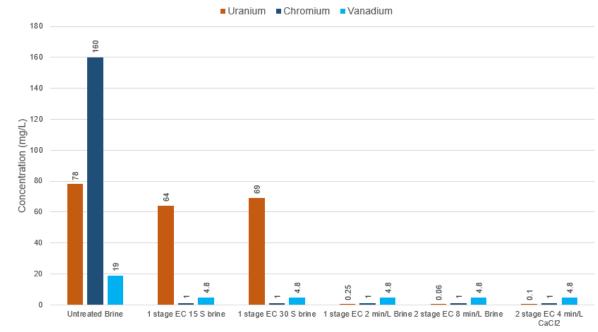
Simplification of the Water Treatment Process

Treatment Simplicity

Primary Treatment Selection

Check pH during the aeration process is above 7.5 Verify the brine is brown, pH above 7.5, the dissolved Verify total Cr in oxygen above 3.5 mg/L, and clarified brine is Verify pH is Verify Cr6 is dissolved ferrous is less than CC less than 1 mg/L between 4-5 below 1 mg/L 0.1 mg/L Spent brine to Aeration and Adjust Polymer Brine Ferrous Filter the brine caustic pH to 5 addition addition settlement Press reaction tank addition EC Spent brine to Brine Automatic Filter the brine EC settlement Press reaction tank Verify total Cr in clarified brine is less

than 1 mg/L


One step in place of Four steps

Chromium come out before Uranium

EC Case Study - Anionic Spent Brine

Palm Desert, CA

Analyte	Concentration (mg/L)	Limit (mg/L)	Regulation	Treatment Goal (mg/L)
Chromium	30 - 250	5.0	TTLC/STLC	1 mg/L
Selenium	1-3	1.0	TTLC/STLC	0.75 mg/L
Vanadium	< 50	24	TTLC/STLC	24 mg/L
Uranium	10 - 150	500	LLRW	4.5 mg/L

Sequencing metal removal may help with harvesting and disposal requirements

Processing aids increase the removal rates

EC Case Study - Anionic Spent Brine Palm Desert, CA

						Analyte	(mg/L)	Limit (mg/L)	Regulation	(mg/L)
						Chromium	30 - 250	5.0	TTLC/STLC	1 mg/L
						Selenium	1-3	1.0	TTLC/STLC	0.75 mg/L
						Vanadium	< 50	24	TTLC/STLC	24 mg/L
						Uranium	10 - 150	500	LLRW	4.5 mg/L
2.5		Selenium								
2.0	2	2	2				% Removal (-		
1.7						with 1	% Removal (00 g/L CaCL ,		/L	
1.5				42% Removal	63% Remova					
1.0	_		_	1						
					0.63					
0.5										
0.0 Untreated Brine	1 stage EC 15 S brine	1 stage EC 30 S brine	1 stage EC 2 min/L Brine	2 stage EC 8 min/L Brine	2 stage EC 4 min/L CaCl2	J				

Selenium

Treatment Go:

Red Desert, Wyoming Frack Flow Back and Produced Water Mixture

Hydraulically-Dredged Wastewater Hudson River Project Results are reported in ug/L except as noted

Analyte	Raw	Post EC & Clarification	% Reduction
Arsenic	30	3.2	89.3
Cadmium	10	0.32	96.8
Chromium	330	13.0	96.1
Copper	230	3.2	98.6
Iron	22,000	29.0	99+
Lead	590	3.2	99+
Mercury	0.72	0.0031	99+
Zinc	2,200	6.4	99+
TOC (mg/l)	5.8	2.1	65.5
TSS (mg/l)	210	4.0	98.1
Total P (mg/	l) 2.3	0.03	98. 7

TOSHIBA

The plant water is electrocoagulated, clarified, and returned to the incoming city water tank.

The people in Thailand drink bottled water.

They probably do not believe me when I tell them that I wash my car and water my lawn with drinking water.

250 gpm Unit, Thailand

Disinfection with Electricity

Eliminates Disinfection By-products Associated with Chlorination -Dechlorination and Ultraviolet Light Shadow Challenges

Thank You! Questions www.powellwater.com

Electrocoagulation Equipment Powell Water System, Inc.

Scott Powell, President

(303) 241-2489

Design, Build and Operation

Lagoon Logistics, LLC Jeff Couch, President (970) 231-9937 Sundine Enterprises

Micro Algae Assemblages Sundine Enterprises, Inc. Judd Sundine, Horticulturist (720) 363-0548

United States Patent Number 10358361 B2 & 11407660 B2. System and Method for Remediation of Wastewater Including Aerobic, Anaerobic and Electrocoagulation Technology. This patent is wholly licensed by Powell Water Systems, Inc.